MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1sdom Structured version   Unicode version

Theorem 1sdom 7712
Description: A set that strictly dominates ordinal 1 has at least 2 different members. (Closely related to 2dom 7578.) (Contributed by Mario Carneiro, 12-Jan-2013.)
Assertion
Ref Expression
1sdom  |-  ( A  e.  V  ->  ( 1o  ~<  A  <->  E. x  e.  A  E. y  e.  A  -.  x  =  y ) )
Distinct variable group:    x, y, A
Allowed substitution hints:    V( x, y)

Proof of Theorem 1sdom
Dummy variables  f 
a are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq2 4444 . 2  |-  ( a  =  A  ->  ( 1o  ~<  a  <->  1o  ~<  A ) )
2 rexeq 3052 . . 3  |-  ( a  =  A  ->  ( E. y  e.  a  -.  x  =  y  <->  E. y  e.  A  -.  x  =  y )
)
32rexeqbi1dv 3060 . 2  |-  ( a  =  A  ->  ( E. x  e.  a  E. y  e.  a  -.  x  =  y  <->  E. x  e.  A  E. y  e.  A  -.  x  =  y )
)
4 1onn 7278 . . . 4  |-  1o  e.  om
5 sucdom 7705 . . . 4  |-  ( 1o  e.  om  ->  ( 1o  ~<  a  <->  suc  1o  ~<_  a ) )
64, 5ax-mp 5 . . 3  |-  ( 1o 
~<  a  <->  suc  1o  ~<_  a )
7 df-2o 7121 . . . 4  |-  2o  =  suc  1o
87breq1i 4447 . . 3  |-  ( 2o  ~<_  a  <->  suc  1o  ~<_  a )
9 2dom 7578 . . . 4  |-  ( 2o  ~<_  a  ->  E. x  e.  a  E. y  e.  a  -.  x  =  y )
10 df2o3 7133 . . . . 5  |-  2o  =  { (/) ,  1o }
11 vex 3109 . . . . . . . . . . . 12  |-  x  e. 
_V
12 vex 3109 . . . . . . . . . . . 12  |-  y  e. 
_V
13 0ex 4570 . . . . . . . . . . . 12  |-  (/)  e.  _V
144elexi 3116 . . . . . . . . . . . 12  |-  1o  e.  _V
1511, 12, 13, 14funpr 5630 . . . . . . . . . . 11  |-  ( x  =/=  y  ->  Fun  {
<. x ,  (/) >. ,  <. y ,  1o >. } )
16 df-ne 2657 . . . . . . . . . . 11  |-  ( x  =/=  y  <->  -.  x  =  y )
17 1n0 7135 . . . . . . . . . . . . . . 15  |-  1o  =/=  (/)
1817necomi 2730 . . . . . . . . . . . . . 14  |-  (/)  =/=  1o
1913, 14, 11, 12fpr 6060 . . . . . . . . . . . . . 14  |-  ( (/)  =/=  1o  ->  { <. (/) ,  x >. ,  <. 1o ,  y
>. } : { (/) ,  1o } --> { x ,  y } )
2018, 19ax-mp 5 . . . . . . . . . . . . 13  |-  { <. (/)
,  x >. ,  <. 1o ,  y >. } : { (/) ,  1o } --> { x ,  y }
21 df-f1 5584 . . . . . . . . . . . . 13  |-  ( {
<. (/) ,  x >. , 
<. 1o ,  y >. } : { (/) ,  1o } -1-1-> { x ,  y }  <->  ( { <. (/)
,  x >. ,  <. 1o ,  y >. } : { (/) ,  1o } --> { x ,  y }  /\  Fun  `' { <. (/) ,  x >. , 
<. 1o ,  y >. } ) )
2220, 21mpbiran 911 . . . . . . . . . . . 12  |-  ( {
<. (/) ,  x >. , 
<. 1o ,  y >. } : { (/) ,  1o } -1-1-> { x ,  y }  <->  Fun  `' { <. (/)
,  x >. ,  <. 1o ,  y >. } )
2313, 11cnvsn 5482 . . . . . . . . . . . . . . 15  |-  `' { <.
(/) ,  x >. }  =  { <. x ,  (/) >. }
2414, 12cnvsn 5482 . . . . . . . . . . . . . . 15  |-  `' { <. 1o ,  y >. }  =  { <. y ,  1o >. }
2523, 24uneq12i 3649 . . . . . . . . . . . . . 14  |-  ( `' { <. (/) ,  x >. }  u.  `' { <. 1o ,  y >. } )  =  ( { <. x ,  (/) >. }  u.  { <. y ,  1o >. } )
26 df-pr 4023 . . . . . . . . . . . . . . . 16  |-  { <. (/)
,  x >. ,  <. 1o ,  y >. }  =  ( { <. (/) ,  x >. }  u.  { <. 1o , 
y >. } )
2726cnveqi 5168 . . . . . . . . . . . . . . 15  |-  `' { <.
(/) ,  x >. , 
<. 1o ,  y >. }  =  `' ( { <. (/) ,  x >. }  u.  { <. 1o , 
y >. } )
28 cnvun 5402 . . . . . . . . . . . . . . 15  |-  `' ( { <. (/) ,  x >. }  u.  { <. 1o , 
y >. } )  =  ( `' { <. (/)
,  x >. }  u.  `' { <. 1o ,  y
>. } )
2927, 28eqtri 2489 . . . . . . . . . . . . . 14  |-  `' { <.
(/) ,  x >. , 
<. 1o ,  y >. }  =  ( `' { <. (/) ,  x >. }  u.  `' { <. 1o ,  y >. } )
30 df-pr 4023 . . . . . . . . . . . . . 14  |-  { <. x ,  (/) >. ,  <. y ,  1o >. }  =  ( { <. x ,  (/) >. }  u.  { <. y ,  1o >. } )
3125, 29, 303eqtr4i 2499 . . . . . . . . . . . . 13  |-  `' { <.
(/) ,  x >. , 
<. 1o ,  y >. }  =  { <. x ,  (/) >. ,  <. y ,  1o >. }
3231funeqi 5599 . . . . . . . . . . . 12  |-  ( Fun  `' { <. (/) ,  x >. , 
<. 1o ,  y >. } 
<->  Fun  { <. x ,  (/) >. ,  <. y ,  1o >. } )
3322, 32bitr2i 250 . . . . . . . . . . 11  |-  ( Fun 
{ <. x ,  (/) >. ,  <. y ,  1o >. }  <->  { <. (/) ,  x >. , 
<. 1o ,  y >. } : { (/) ,  1o } -1-1-> { x ,  y } )
3415, 16, 333imtr3i 265 . . . . . . . . . 10  |-  ( -.  x  =  y  ->  { <. (/) ,  x >. , 
<. 1o ,  y >. } : { (/) ,  1o } -1-1-> { x ,  y } )
35 prssi 4176 . . . . . . . . . 10  |-  ( ( x  e.  a  /\  y  e.  a )  ->  { x ,  y }  C_  a )
36 f1ss 5777 . . . . . . . . . 10  |-  ( ( { <. (/) ,  x >. , 
<. 1o ,  y >. } : { (/) ,  1o } -1-1-> { x ,  y }  /\  { x ,  y }  C_  a )  ->  { <. (/)
,  x >. ,  <. 1o ,  y >. } : { (/) ,  1o } -1-1-> a )
3734, 35, 36syl2an 477 . . . . . . . . 9  |-  ( ( -.  x  =  y  /\  ( x  e.  a  /\  y  e.  a ) )  ->  { <. (/) ,  x >. , 
<. 1o ,  y >. } : { (/) ,  1o } -1-1-> a )
38 prex 4682 . . . . . . . . . 10  |-  { <. (/)
,  x >. ,  <. 1o ,  y >. }  e.  _V
39 f1eq1 5767 . . . . . . . . . 10  |-  ( f  =  { <. (/) ,  x >. ,  <. 1o ,  y
>. }  ->  ( f : { (/) ,  1o } -1-1-> a  <->  { <. (/) ,  x >. , 
<. 1o ,  y >. } : { (/) ,  1o } -1-1-> a ) )
4038, 39spcev 3198 . . . . . . . . 9  |-  ( {
<. (/) ,  x >. , 
<. 1o ,  y >. } : { (/) ,  1o } -1-1-> a  ->  E. f 
f : { (/) ,  1o } -1-1-> a )
4137, 40syl 16 . . . . . . . 8  |-  ( ( -.  x  =  y  /\  ( x  e.  a  /\  y  e.  a ) )  ->  E. f  f : { (/) ,  1o } -1-1-> a )
42 vex 3109 . . . . . . . . 9  |-  a  e. 
_V
4342brdom 7518 . . . . . . . 8  |-  ( {
(/) ,  1o }  ~<_  a  <->  E. f 
f : { (/) ,  1o } -1-1-> a )
4441, 43sylibr 212 . . . . . . 7  |-  ( ( -.  x  =  y  /\  ( x  e.  a  /\  y  e.  a ) )  ->  { (/) ,  1o }  ~<_  a )
4544expcom 435 . . . . . 6  |-  ( ( x  e.  a  /\  y  e.  a )  ->  ( -.  x  =  y  ->  { (/) ,  1o }  ~<_  a ) )
4645rexlimivv 2953 . . . . 5  |-  ( E. x  e.  a  E. y  e.  a  -.  x  =  y  ->  {
(/) ,  1o }  ~<_  a )
4710, 46syl5eqbr 4473 . . . 4  |-  ( E. x  e.  a  E. y  e.  a  -.  x  =  y  ->  2o  ~<_  a )
489, 47impbii 188 . . 3  |-  ( 2o  ~<_  a  <->  E. x  e.  a  E. y  e.  a  -.  x  =  y )
496, 8, 483bitr2i 273 . 2  |-  ( 1o 
~<  a  <->  E. x  e.  a  E. y  e.  a  -.  x  =  y )
501, 3, 49vtoclbg 3165 1  |-  ( A  e.  V  ->  ( 1o  ~<  A  <->  E. x  e.  A  E. y  e.  A  -.  x  =  y ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369   E.wex 1591    e. wcel 1762    =/= wne 2655   E.wrex 2808    u. cun 3467    C_ wss 3469   (/)c0 3778   {csn 4020   {cpr 4022   <.cop 4026   class class class wbr 4440   suc csuc 4873   `'ccnv 4991   Fun wfun 5573   -->wf 5575   -1-1->wf1 5576   omcom 6671   1oc1o 7113   2oc2o 7114    ~<_ cdom 7504    ~< csdm 7505
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1961  ax-ext 2438  ax-sep 4561  ax-nul 4569  ax-pow 4618  ax-pr 4679  ax-un 6567
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 969  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2272  df-mo 2273  df-clab 2446  df-cleq 2452  df-clel 2455  df-nfc 2610  df-ne 2657  df-ral 2812  df-rex 2813  df-rab 2816  df-v 3108  df-sbc 3325  df-dif 3472  df-un 3474  df-in 3476  df-ss 3483  df-pss 3485  df-nul 3779  df-if 3933  df-pw 4005  df-sn 4021  df-pr 4023  df-tp 4025  df-op 4027  df-uni 4239  df-br 4441  df-opab 4499  df-tr 4534  df-eprel 4784  df-id 4788  df-po 4793  df-so 4794  df-fr 4831  df-we 4833  df-ord 4874  df-on 4875  df-lim 4876  df-suc 4877  df-xp 4998  df-rel 4999  df-cnv 5000  df-co 5001  df-dm 5002  df-rn 5003  df-res 5004  df-ima 5005  df-iota 5542  df-fun 5581  df-fn 5582  df-f 5583  df-f1 5584  df-fo 5585  df-f1o 5586  df-fv 5587  df-om 6672  df-1o 7120  df-2o 7121  df-er 7301  df-en 7507  df-dom 7508  df-sdom 7509
This theorem is referenced by:  unxpdomlem3  7716  frgpnabl  16663  isnzr2  17686
  Copyright terms: Public domain W3C validator