MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1pr Structured version   Unicode version

Theorem 1pr 9396
Description: The positive real number 'one'. (Contributed by NM, 13-Mar-1996.) (Revised by Mario Carneiro, 12-Jun-2013.) (New usage is discouraged.)
Assertion
Ref Expression
1pr  |-  1P  e.  P.

Proof of Theorem 1pr
StepHypRef Expression
1 df-1p 9363 . 2  |-  1P  =  { x  |  x  <Q  1Q }
2 1nq 9309 . . 3  |-  1Q  e.  Q.
3 nqpr 9395 . . 3  |-  ( 1Q  e.  Q.  ->  { x  |  x  <Q  1Q }  e.  P. )
42, 3ax-mp 5 . 2  |-  { x  |  x  <Q  1Q }  e.  P.
51, 4eqeltri 2527 1  |-  1P  e.  P.
Colors of variables: wff setvar class
Syntax hints:    e. wcel 1804   {cab 2428   class class class wbr 4437   Q.cnq 9233   1Qc1q 9234    <Q cltq 9239   P.cnp 9240   1Pc1p 9241
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-8 1806  ax-9 1808  ax-10 1823  ax-11 1828  ax-12 1840  ax-13 1985  ax-ext 2421  ax-sep 4558  ax-nul 4566  ax-pow 4615  ax-pr 4676  ax-un 6577  ax-inf2 8061
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 975  df-3an 976  df-tru 1386  df-ex 1600  df-nf 1604  df-sb 1727  df-eu 2272  df-mo 2273  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2593  df-ne 2640  df-ral 2798  df-rex 2799  df-reu 2800  df-rmo 2801  df-rab 2802  df-v 3097  df-sbc 3314  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3771  df-if 3927  df-pw 3999  df-sn 4015  df-pr 4017  df-tp 4019  df-op 4021  df-uni 4235  df-int 4272  df-iun 4317  df-br 4438  df-opab 4496  df-mpt 4497  df-tr 4531  df-eprel 4781  df-id 4785  df-po 4790  df-so 4791  df-fr 4828  df-we 4830  df-ord 4871  df-on 4872  df-lim 4873  df-suc 4874  df-xp 4995  df-rel 4996  df-cnv 4997  df-co 4998  df-dm 4999  df-rn 5000  df-res 5001  df-ima 5002  df-iota 5541  df-fun 5580  df-fn 5581  df-f 5582  df-f1 5583  df-fo 5584  df-f1o 5585  df-fv 5586  df-ov 6284  df-oprab 6285  df-mpt2 6286  df-om 6686  df-1st 6785  df-2nd 6786  df-recs 7044  df-rdg 7078  df-1o 7132  df-oadd 7136  df-omul 7137  df-er 7313  df-ni 9253  df-pli 9254  df-mi 9255  df-lti 9256  df-plpq 9289  df-mpq 9290  df-ltpq 9291  df-enq 9292  df-nq 9293  df-erq 9294  df-plq 9295  df-mq 9296  df-1nq 9297  df-rq 9298  df-ltnq 9299  df-np 9362  df-1p 9363
This theorem is referenced by:  1idpr  9410  gt0srpr  9458  0r  9460  1sr  9461  m1r  9462  m1p1sr  9472  m1m1sr  9473  0lt1sr  9475  0idsr  9477  1idsr  9478  00sr  9479  recexsrlem  9483  mappsrpr  9488  ltpsrpr  9489  map2psrpr  9490  supsrlem  9491
  Copyright terms: Public domain W3C validator