![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 1p0e1 | Structured version Visualization version Unicode version |
Description: 1 + 0 = 1. (Contributed by David A. Wheeler, 8-Dec-2018.) |
Ref | Expression |
---|---|
1p0e1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1cn 9622 |
. 2
![]() ![]() ![]() ![]() | |
2 | 1 | addid1i 9845 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1679 ax-4 1692 ax-5 1768 ax-6 1815 ax-7 1861 ax-8 1899 ax-9 1906 ax-10 1925 ax-11 1930 ax-12 1943 ax-13 2101 ax-ext 2441 ax-sep 4538 ax-nul 4547 ax-pow 4594 ax-pr 4652 ax-un 6609 ax-resscn 9621 ax-1cn 9622 ax-icn 9623 ax-addcl 9624 ax-addrcl 9625 ax-mulcl 9626 ax-mulrcl 9627 ax-mulcom 9628 ax-addass 9629 ax-mulass 9630 ax-distr 9631 ax-i2m1 9632 ax-1ne0 9633 ax-1rid 9634 ax-rnegex 9635 ax-rrecex 9636 ax-cnre 9637 ax-pre-lttri 9638 ax-pre-lttrn 9639 ax-pre-ltadd 9640 |
This theorem depends on definitions: df-bi 190 df-or 376 df-an 377 df-3or 992 df-3an 993 df-tru 1457 df-ex 1674 df-nf 1678 df-sb 1808 df-eu 2313 df-mo 2314 df-clab 2448 df-cleq 2454 df-clel 2457 df-nfc 2591 df-ne 2634 df-nel 2635 df-ral 2753 df-rex 2754 df-rab 2757 df-v 3058 df-sbc 3279 df-csb 3375 df-dif 3418 df-un 3420 df-in 3422 df-ss 3429 df-nul 3743 df-if 3893 df-pw 3964 df-sn 3980 df-pr 3982 df-op 3986 df-uni 4212 df-br 4416 df-opab 4475 df-mpt 4476 df-id 4767 df-po 4773 df-so 4774 df-xp 4858 df-rel 4859 df-cnv 4860 df-co 4861 df-dm 4862 df-rn 4863 df-res 4864 df-ima 4865 df-iota 5564 df-fun 5602 df-fn 5603 df-f 5604 df-f1 5605 df-fo 5606 df-f1o 5607 df-fv 5608 df-ov 6317 df-er 7388 df-en 7595 df-dom 7596 df-sdom 7597 df-pnf 9702 df-mnf 9703 df-ltxr 9705 |
This theorem is referenced by: xov1plusxeqvd 11806 bernneq 12429 bcpasc 12537 relexpaddg 13164 4sqlem19 14961 2503lem2 15157 ef2pi 23480 dvsqrt 23730 dvcnsqrt 23732 loglesqrt 23746 efrlim 23943 basellem7 24061 1sgm2ppw 24176 chpchtlim 24365 axlowdimlem16 25035 vdgr1b 25680 vc0 26236 ballotlemic 29387 ballotlemicOLD 29425 divcnvlin 30415 faclim 30430 poimirlem16 32000 poimirlem31 32015 pell1qr1 35761 pell1qrgaplem 35763 rmxy0 35815 binomcxplemnotnn0 36748 clim1fr1 37716 dvxpaek 37852 itgiccshift 37894 itgperiod 37895 wallispi2lem2 37971 |
Copyright terms: Public domain | W3C validator |