![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 1nprm | Structured version Visualization version Unicode version |
Description: 1 is not a prime number. (Contributed by Paul Chapman, 22-Jun-2011.) (Proof shortened by Fan Zheng, 3-Jul-2016.) |
Ref | Expression |
---|---|
1nprm |
![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1nn 10647 |
. . . . . . . . 9
![]() ![]() ![]() ![]() | |
2 | eleq1 2527 |
. . . . . . . . 9
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | mpbiri 241 |
. . . . . . . 8
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | nnnn0 10904 |
. . . . . . . . . 10
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | dvds1 14401 |
. . . . . . . . . 10
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
6 | 4, 5 | syl 17 |
. . . . . . . . 9
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
7 | 6 | bicomd 206 |
. . . . . . . 8
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
8 | 3, 7 | biadan2 652 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
9 | elsn 3993 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
10 | breq1 4418 |
. . . . . . . 8
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
11 | 10 | elrab 3207 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
12 | 8, 9, 11 | 3bitr4ri 286 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
13 | 12 | eqriv 2458 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
14 | 1ex 9663 |
. . . . . 6
![]() ![]() ![]() ![]() | |
15 | 14 | ensn1 7658 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() |
16 | 13, 15 | eqbrtri 4435 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
17 | 1sdom2 7796 |
. . . 4
![]() ![]() ![]() ![]() | |
18 | ensdomtr 7733 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
19 | 16, 17, 18 | mp2an 683 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
20 | sdomnen 7623 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
21 | 19, 20 | ax-mp 5 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
22 | isprm 14672 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
23 | 1, 22 | mpbiran 934 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
24 | 21, 23 | mtbir 305 |
1
![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1679 ax-4 1692 ax-5 1768 ax-6 1815 ax-7 1861 ax-8 1899 ax-9 1906 ax-10 1925 ax-11 1930 ax-12 1943 ax-13 2101 ax-ext 2441 ax-sep 4538 ax-nul 4547 ax-pow 4594 ax-pr 4652 ax-un 6609 ax-resscn 9621 ax-1cn 9622 ax-icn 9623 ax-addcl 9624 ax-addrcl 9625 ax-mulcl 9626 ax-mulrcl 9627 ax-mulcom 9628 ax-addass 9629 ax-mulass 9630 ax-distr 9631 ax-i2m1 9632 ax-1ne0 9633 ax-1rid 9634 ax-rnegex 9635 ax-rrecex 9636 ax-cnre 9637 ax-pre-lttri 9638 ax-pre-lttrn 9639 ax-pre-ltadd 9640 ax-pre-mulgt0 9641 |
This theorem depends on definitions: df-bi 190 df-or 376 df-an 377 df-3or 992 df-3an 993 df-tru 1457 df-ex 1674 df-nf 1678 df-sb 1808 df-eu 2313 df-mo 2314 df-clab 2448 df-cleq 2454 df-clel 2457 df-nfc 2591 df-ne 2634 df-nel 2635 df-ral 2753 df-rex 2754 df-reu 2755 df-rab 2757 df-v 3058 df-sbc 3279 df-csb 3375 df-dif 3418 df-un 3420 df-in 3422 df-ss 3429 df-pss 3431 df-nul 3743 df-if 3893 df-pw 3964 df-sn 3980 df-pr 3982 df-tp 3984 df-op 3986 df-uni 4212 df-iun 4293 df-br 4416 df-opab 4475 df-mpt 4476 df-tr 4511 df-eprel 4763 df-id 4767 df-po 4773 df-so 4774 df-fr 4811 df-we 4813 df-xp 4858 df-rel 4859 df-cnv 4860 df-co 4861 df-dm 4862 df-rn 4863 df-res 4864 df-ima 4865 df-pred 5398 df-ord 5444 df-on 5445 df-lim 5446 df-suc 5447 df-iota 5564 df-fun 5602 df-fn 5603 df-f 5604 df-f1 5605 df-fo 5606 df-f1o 5607 df-fv 5608 df-riota 6276 df-ov 6317 df-oprab 6318 df-mpt2 6319 df-om 6719 df-wrecs 7053 df-recs 7115 df-rdg 7153 df-1o 7207 df-2o 7208 df-er 7388 df-en 7595 df-dom 7596 df-sdom 7597 df-pnf 9702 df-mnf 9703 df-xr 9704 df-ltxr 9705 df-le 9706 df-sub 9887 df-neg 9888 df-nn 10637 df-n0 10898 df-z 10966 df-dvds 14354 df-prm 14671 |
This theorem is referenced by: isprm2 14680 nprmdvds1 14698 pcmpt 14885 prmo1 15043 prmlem1a 15126 prmcyg 17576 prmirredlem 19112 bposlem5 24264 |
Copyright terms: Public domain | W3C validator |