MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1marepvsma1 Structured version   Unicode version

Theorem 1marepvsma1 18399
Description: The submatrix of the identity matrix with the ith column replaced by the vector obtained by removing the ith row and the ith column is an identity matrix. (Contributed by AV, 14-Feb-2019.) (Revised by AV, 27-Feb-2019.)
Hypotheses
Ref Expression
1marepvsma1.v  |-  V  =  ( ( Base `  R
)  ^m  N )
1marepvsma1.1  |-  .1.  =  ( 1r `  ( N Mat 
R ) )
1marepvsma1.x  |-  X  =  ( (  .1.  ( N matRepV  R ) Z ) `
 I )
Assertion
Ref Expression
1marepvsma1  |-  ( ( ( R  e.  Ring  /\  N  e.  Fin )  /\  ( I  e.  N  /\  Z  e.  V
) )  ->  (
I ( ( N subMat  R ) `  X
) I )  =  ( 1r `  (
( N  \  {
I } ) Mat  R
) ) )

Proof of Theorem 1marepvsma1
Dummy variables  i 
j are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1marepvsma1.x . . . . . 6  |-  X  =  ( (  .1.  ( N matRepV  R ) Z ) `
 I )
21oveqi 6109 . . . . 5  |-  ( i X j )  =  ( i ( (  .1.  ( N matRepV  R
) Z ) `  I ) j )
32a1i 11 . . . 4  |-  ( ( ( ( R  e. 
Ring  /\  N  e.  Fin )  /\  ( I  e.  N  /\  Z  e.  V ) )  /\  i  e.  ( N  \  { I } )  /\  j  e.  ( N  \  { I } ) )  -> 
( i X j )  =  ( i ( (  .1.  ( N matRepV  R ) Z ) `
 I ) j ) )
4 eqid 2443 . . . . . . . . 9  |-  ( N Mat 
R )  =  ( N Mat  R )
5 eqid 2443 . . . . . . . . 9  |-  ( Base `  ( N Mat  R ) )  =  ( Base `  ( N Mat  R ) )
6 1marepvsma1.1 . . . . . . . . 9  |-  .1.  =  ( 1r `  ( N Mat 
R ) )
74, 5, 6mat1bas 18341 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  N  e.  Fin )  ->  .1.  e.  ( Base `  ( N Mat  R ) ) )
87adantr 465 . . . . . . 7  |-  ( ( ( R  e.  Ring  /\  N  e.  Fin )  /\  ( I  e.  N  /\  Z  e.  V
) )  ->  .1.  e.  ( Base `  ( N Mat  R ) ) )
9 simprr 756 . . . . . . 7  |-  ( ( ( R  e.  Ring  /\  N  e.  Fin )  /\  ( I  e.  N  /\  Z  e.  V
) )  ->  Z  e.  V )
10 simprl 755 . . . . . . 7  |-  ( ( ( R  e.  Ring  /\  N  e.  Fin )  /\  ( I  e.  N  /\  Z  e.  V
) )  ->  I  e.  N )
118, 9, 103jca 1168 . . . . . 6  |-  ( ( ( R  e.  Ring  /\  N  e.  Fin )  /\  ( I  e.  N  /\  Z  e.  V
) )  ->  (  .1.  e.  ( Base `  ( N Mat  R ) )  /\  Z  e.  V  /\  I  e.  N )
)
12113ad2ant1 1009 . . . . 5  |-  ( ( ( ( R  e. 
Ring  /\  N  e.  Fin )  /\  ( I  e.  N  /\  Z  e.  V ) )  /\  i  e.  ( N  \  { I } )  /\  j  e.  ( N  \  { I } ) )  -> 
(  .1.  e.  (
Base `  ( N Mat  R ) )  /\  Z  e.  V  /\  I  e.  N ) )
13 eldifi 3483 . . . . . . 7  |-  ( i  e.  ( N  \  { I } )  ->  i  e.  N
)
14 eldifi 3483 . . . . . . 7  |-  ( j  e.  ( N  \  { I } )  ->  j  e.  N
)
1513, 14anim12i 566 . . . . . 6  |-  ( ( i  e.  ( N 
\  { I }
)  /\  j  e.  ( N  \  { I } ) )  -> 
( i  e.  N  /\  j  e.  N
) )
16153adant1 1006 . . . . 5  |-  ( ( ( ( R  e. 
Ring  /\  N  e.  Fin )  /\  ( I  e.  N  /\  Z  e.  V ) )  /\  i  e.  ( N  \  { I } )  /\  j  e.  ( N  \  { I } ) )  -> 
( i  e.  N  /\  j  e.  N
) )
17 eqid 2443 . . . . . 6  |-  ( N matRepV  R )  =  ( N matRepV  R )
18 1marepvsma1.v . . . . . 6  |-  V  =  ( ( Base `  R
)  ^m  N )
194, 5, 17, 18marepveval 18384 . . . . 5  |-  ( ( (  .1.  e.  (
Base `  ( N Mat  R ) )  /\  Z  e.  V  /\  I  e.  N )  /\  (
i  e.  N  /\  j  e.  N )
)  ->  ( i
( (  .1.  ( N matRepV  R ) Z ) `
 I ) j )  =  if ( j  =  I ,  ( Z `  i
) ,  ( i  .1.  j ) ) )
2012, 16, 19syl2anc 661 . . . 4  |-  ( ( ( ( R  e. 
Ring  /\  N  e.  Fin )  /\  ( I  e.  N  /\  Z  e.  V ) )  /\  i  e.  ( N  \  { I } )  /\  j  e.  ( N  \  { I } ) )  -> 
( i ( (  .1.  ( N matRepV  R
) Z ) `  I ) j )  =  if ( j  =  I ,  ( Z `  i ) ,  ( i  .1.  j ) ) )
21 eldifsni 4006 . . . . . . . 8  |-  ( j  e.  ( N  \  { I } )  ->  j  =/=  I
)
2221neneqd 2629 . . . . . . 7  |-  ( j  e.  ( N  \  { I } )  ->  -.  j  =  I )
23223ad2ant3 1011 . . . . . 6  |-  ( ( ( ( R  e. 
Ring  /\  N  e.  Fin )  /\  ( I  e.  N  /\  Z  e.  V ) )  /\  i  e.  ( N  \  { I } )  /\  j  e.  ( N  \  { I } ) )  ->  -.  j  =  I
)
24 iffalse 3804 . . . . . 6  |-  ( -.  j  =  I  ->  if ( j  =  I ,  ( Z `  i ) ,  ( i  .1.  j ) )  =  ( i  .1.  j ) )
2523, 24syl 16 . . . . 5  |-  ( ( ( ( R  e. 
Ring  /\  N  e.  Fin )  /\  ( I  e.  N  /\  Z  e.  V ) )  /\  i  e.  ( N  \  { I } )  /\  j  e.  ( N  \  { I } ) )  ->  if ( j  =  I ,  ( Z `  i ) ,  ( i  .1.  j ) )  =  ( i  .1.  j ) )
26 eqid 2443 . . . . . 6  |-  ( 1r
`  R )  =  ( 1r `  R
)
27 eqid 2443 . . . . . 6  |-  ( 0g
`  R )  =  ( 0g `  R
)
28 simp1lr 1052 . . . . . 6  |-  ( ( ( ( R  e. 
Ring  /\  N  e.  Fin )  /\  ( I  e.  N  /\  Z  e.  V ) )  /\  i  e.  ( N  \  { I } )  /\  j  e.  ( N  \  { I } ) )  ->  N  e.  Fin )
29 simp1ll 1051 . . . . . 6  |-  ( ( ( ( R  e. 
Ring  /\  N  e.  Fin )  /\  ( I  e.  N  /\  Z  e.  V ) )  /\  i  e.  ( N  \  { I } )  /\  j  e.  ( N  \  { I } ) )  ->  R  e.  Ring )
30133ad2ant2 1010 . . . . . 6  |-  ( ( ( ( R  e. 
Ring  /\  N  e.  Fin )  /\  ( I  e.  N  /\  Z  e.  V ) )  /\  i  e.  ( N  \  { I } )  /\  j  e.  ( N  \  { I } ) )  -> 
i  e.  N )
31143ad2ant3 1011 . . . . . 6  |-  ( ( ( ( R  e. 
Ring  /\  N  e.  Fin )  /\  ( I  e.  N  /\  Z  e.  V ) )  /\  i  e.  ( N  \  { I } )  /\  j  e.  ( N  \  { I } ) )  -> 
j  e.  N )
324, 26, 27, 28, 29, 30, 31, 6mat1ov 18340 . . . . 5  |-  ( ( ( ( R  e. 
Ring  /\  N  e.  Fin )  /\  ( I  e.  N  /\  Z  e.  V ) )  /\  i  e.  ( N  \  { I } )  /\  j  e.  ( N  \  { I } ) )  -> 
( i  .1.  j
)  =  if ( i  =  j ,  ( 1r `  R
) ,  ( 0g
`  R ) ) )
3325, 32eqtrd 2475 . . . 4  |-  ( ( ( ( R  e. 
Ring  /\  N  e.  Fin )  /\  ( I  e.  N  /\  Z  e.  V ) )  /\  i  e.  ( N  \  { I } )  /\  j  e.  ( N  \  { I } ) )  ->  if ( j  =  I ,  ( Z `  i ) ,  ( i  .1.  j ) )  =  if ( i  =  j ,  ( 1r `  R
) ,  ( 0g
`  R ) ) )
343, 20, 333eqtrd 2479 . . 3  |-  ( ( ( ( R  e. 
Ring  /\  N  e.  Fin )  /\  ( I  e.  N  /\  Z  e.  V ) )  /\  i  e.  ( N  \  { I } )  /\  j  e.  ( N  \  { I } ) )  -> 
( i X j )  =  if ( i  =  j ,  ( 1r `  R
) ,  ( 0g
`  R ) ) )
3534mpt2eq3dva 6155 . 2  |-  ( ( ( R  e.  Ring  /\  N  e.  Fin )  /\  ( I  e.  N  /\  Z  e.  V
) )  ->  (
i  e.  ( N 
\  { I }
) ,  j  e.  ( N  \  {
I } )  |->  ( i X j ) )  =  ( i  e.  ( N  \  { I } ) ,  j  e.  ( N  \  { I } )  |->  if ( i  =  j ,  ( 1r `  R
) ,  ( 0g
`  R ) ) ) )
364, 5, 18, 6ma1repvcl 18386 . . . . 5  |-  ( ( ( R  e.  Ring  /\  N  e.  Fin )  /\  ( Z  e.  V  /\  I  e.  N
) )  ->  (
(  .1.  ( N matRepV  R ) Z ) `
 I )  e.  ( Base `  ( N Mat  R ) ) )
3736ancom2s 800 . . . 4  |-  ( ( ( R  e.  Ring  /\  N  e.  Fin )  /\  ( I  e.  N  /\  Z  e.  V
) )  ->  (
(  .1.  ( N matRepV  R ) Z ) `
 I )  e.  ( Base `  ( N Mat  R ) ) )
381, 37syl5eqel 2527 . . 3  |-  ( ( ( R  e.  Ring  /\  N  e.  Fin )  /\  ( I  e.  N  /\  Z  e.  V
) )  ->  X  e.  ( Base `  ( N Mat  R ) ) )
39 eqid 2443 . . . 4  |-  ( N subMat  R )  =  ( N subMat  R )
404, 39, 5submaval 18397 . . 3  |-  ( ( X  e.  ( Base `  ( N Mat  R ) )  /\  I  e.  N  /\  I  e.  N )  ->  (
I ( ( N subMat  R ) `  X
) I )  =  ( i  e.  ( N  \  { I } ) ,  j  e.  ( N  \  { I } ) 
|->  ( i X j ) ) )
4138, 10, 10, 40syl3anc 1218 . 2  |-  ( ( ( R  e.  Ring  /\  N  e.  Fin )  /\  ( I  e.  N  /\  Z  e.  V
) )  ->  (
I ( ( N subMat  R ) `  X
) I )  =  ( i  e.  ( N  \  { I } ) ,  j  e.  ( N  \  { I } ) 
|->  ( i X j ) ) )
42 diffi 7548 . . . . . 6  |-  ( N  e.  Fin  ->  ( N  \  { I }
)  e.  Fin )
4342anim2i 569 . . . . 5  |-  ( ( R  e.  Ring  /\  N  e.  Fin )  ->  ( R  e.  Ring  /\  ( N  \  { I }
)  e.  Fin )
)
4443ancomd 451 . . . 4  |-  ( ( R  e.  Ring  /\  N  e.  Fin )  ->  (
( N  \  {
I } )  e. 
Fin  /\  R  e.  Ring ) )
4544adantr 465 . . 3  |-  ( ( ( R  e.  Ring  /\  N  e.  Fin )  /\  ( I  e.  N  /\  Z  e.  V
) )  ->  (
( N  \  {
I } )  e. 
Fin  /\  R  e.  Ring ) )
46 eqid 2443 . . . 4  |-  ( ( N  \  { I } ) Mat  R )  =  ( ( N 
\  { I }
) Mat  R )
4746, 26, 27mat1 18339 . . 3  |-  ( ( ( N  \  {
I } )  e. 
Fin  /\  R  e.  Ring )  ->  ( 1r `  ( ( N  \  { I } ) Mat 
R ) )  =  ( i  e.  ( N  \  { I } ) ,  j  e.  ( N  \  { I } ) 
|->  if ( i  =  j ,  ( 1r
`  R ) ,  ( 0g `  R
) ) ) )
4845, 47syl 16 . 2  |-  ( ( ( R  e.  Ring  /\  N  e.  Fin )  /\  ( I  e.  N  /\  Z  e.  V
) )  ->  ( 1r `  ( ( N 
\  { I }
) Mat  R ) )  =  ( i  e.  ( N  \  {
I } ) ,  j  e.  ( N 
\  { I }
)  |->  if ( i  =  j ,  ( 1r `  R ) ,  ( 0g `  R ) ) ) )
4935, 41, 483eqtr4d 2485 1  |-  ( ( ( R  e.  Ring  /\  N  e.  Fin )  /\  ( I  e.  N  /\  Z  e.  V
) )  ->  (
I ( ( N subMat  R ) `  X
) I )  =  ( 1r `  (
( N  \  {
I } ) Mat  R
) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756    \ cdif 3330   ifcif 3796   {csn 3882   ` cfv 5423  (class class class)co 6096    e. cmpt2 6098    ^m cmap 7219   Fincfn 7315   Basecbs 14179   0gc0g 14383   1rcur 16608   Ringcrg 16650   Mat cmat 18285   matRepV cmatrepV 18373   subMat csubma 18392
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4408  ax-sep 4418  ax-nul 4426  ax-pow 4475  ax-pr 4536  ax-un 6377  ax-inf2 7852  ax-cnex 9343  ax-resscn 9344  ax-1cn 9345  ax-icn 9346  ax-addcl 9347  ax-addrcl 9348  ax-mulcl 9349  ax-mulrcl 9350  ax-mulcom 9351  ax-addass 9352  ax-mulass 9353  ax-distr 9354  ax-i2m1 9355  ax-1ne0 9356  ax-1rid 9357  ax-rnegex 9358  ax-rrecex 9359  ax-cnre 9360  ax-pre-lttri 9361  ax-pre-lttrn 9362  ax-pre-ltadd 9363  ax-pre-mulgt0 9364
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2573  df-ne 2613  df-nel 2614  df-ral 2725  df-rex 2726  df-reu 2727  df-rmo 2728  df-rab 2729  df-v 2979  df-sbc 3192  df-csb 3294  df-dif 3336  df-un 3338  df-in 3340  df-ss 3347  df-pss 3349  df-nul 3643  df-if 3797  df-pw 3867  df-sn 3883  df-pr 3885  df-tp 3887  df-op 3889  df-ot 3891  df-uni 4097  df-int 4134  df-iun 4178  df-iin 4179  df-br 4298  df-opab 4356  df-mpt 4357  df-tr 4391  df-eprel 4637  df-id 4641  df-po 4646  df-so 4647  df-fr 4684  df-se 4685  df-we 4686  df-ord 4727  df-on 4728  df-lim 4729  df-suc 4730  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5386  df-fun 5425  df-fn 5426  df-f 5427  df-f1 5428  df-fo 5429  df-f1o 5430  df-fv 5431  df-isom 5432  df-riota 6057  df-ov 6099  df-oprab 6100  df-mpt2 6101  df-of 6325  df-om 6482  df-1st 6582  df-2nd 6583  df-supp 6696  df-recs 6837  df-rdg 6871  df-1o 6925  df-oadd 6929  df-er 7106  df-map 7221  df-ixp 7269  df-en 7316  df-dom 7317  df-sdom 7318  df-fin 7319  df-fsupp 7626  df-sup 7696  df-oi 7729  df-card 8114  df-pnf 9425  df-mnf 9426  df-xr 9427  df-ltxr 9428  df-le 9429  df-sub 9602  df-neg 9603  df-nn 10328  df-2 10385  df-3 10386  df-4 10387  df-5 10388  df-6 10389  df-7 10390  df-8 10391  df-9 10392  df-10 10393  df-n0 10585  df-z 10652  df-dec 10761  df-uz 10867  df-fz 11443  df-fzo 11554  df-seq 11812  df-hash 12109  df-struct 14181  df-ndx 14182  df-slot 14183  df-base 14184  df-sets 14185  df-ress 14186  df-plusg 14256  df-mulr 14257  df-sca 14259  df-vsca 14260  df-ip 14261  df-tset 14262  df-ple 14263  df-ds 14265  df-hom 14267  df-cco 14268  df-0g 14385  df-gsum 14386  df-prds 14391  df-pws 14393  df-mre 14529  df-mrc 14530  df-acs 14532  df-mnd 15420  df-mhm 15469  df-submnd 15470  df-grp 15550  df-minusg 15551  df-sbg 15552  df-mulg 15553  df-subg 15683  df-ghm 15750  df-cntz 15840  df-cmn 16284  df-abl 16285  df-mgp 16597  df-ur 16609  df-rng 16652  df-subrg 16868  df-lmod 16955  df-lss 17019  df-sra 17258  df-rgmod 17259  df-dsmm 18162  df-frlm 18177  df-mamu 18286  df-mat 18287  df-marepv 18375  df-subma 18393
This theorem is referenced by:  cramerimplem1  18494
  Copyright terms: Public domain W3C validator