MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1lt2pi Structured version   Unicode version

Theorem 1lt2pi 9295
Description: One is less than two (one plus one). (Contributed by NM, 13-Mar-1996.) (New usage is discouraged.)
Assertion
Ref Expression
1lt2pi  |-  1o  <N  ( 1o  +N  1o )

Proof of Theorem 1lt2pi
StepHypRef Expression
1 1onn 7300 . . . . 5  |-  1o  e.  om
2 nna0 7265 . . . . 5  |-  ( 1o  e.  om  ->  ( 1o  +o  (/) )  =  1o )
31, 2ax-mp 5 . . . 4  |-  ( 1o 
+o  (/) )  =  1o
4 0lt1o 7166 . . . . 5  |-  (/)  e.  1o
5 peano1 6714 . . . . . 6  |-  (/)  e.  om
6 nnaord 7280 . . . . . 6  |-  ( (
(/)  e.  om  /\  1o  e.  om  /\  1o  e.  om )  ->  ( (/)  e.  1o  <->  ( 1o  +o  (/) )  e.  ( 1o  +o  1o ) ) )
75, 1, 1, 6mp3an 1324 . . . . 5  |-  ( (/)  e.  1o  <->  ( 1o  +o  (/) )  e.  ( 1o 
+o  1o ) )
84, 7mpbi 208 . . . 4  |-  ( 1o 
+o  (/) )  e.  ( 1o  +o  1o )
93, 8eqeltrri 2552 . . 3  |-  1o  e.  ( 1o  +o  1o )
10 1pi 9273 . . . 4  |-  1o  e.  N.
11 addpiord 9274 . . . 4  |-  ( ( 1o  e.  N.  /\  1o  e.  N. )  -> 
( 1o  +N  1o )  =  ( 1o  +o  1o ) )
1210, 10, 11mp2an 672 . . 3  |-  ( 1o 
+N  1o )  =  ( 1o  +o  1o )
139, 12eleqtrri 2554 . 2  |-  1o  e.  ( 1o  +N  1o )
14 addclpi 9282 . . . 4  |-  ( ( 1o  e.  N.  /\  1o  e.  N. )  -> 
( 1o  +N  1o )  e.  N. )
1510, 10, 14mp2an 672 . . 3  |-  ( 1o 
+N  1o )  e. 
N.
16 ltpiord 9277 . . 3  |-  ( ( 1o  e.  N.  /\  ( 1o  +N  1o )  e.  N. )  ->  ( 1o  <N  ( 1o  +N  1o )  <->  1o  e.  ( 1o  +N  1o ) ) )
1710, 15, 16mp2an 672 . 2  |-  ( 1o 
<N  ( 1o  +N  1o ) 
<->  1o  e.  ( 1o 
+N  1o ) )
1813, 17mpbir 209 1  |-  1o  <N  ( 1o  +N  1o )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184    = wceq 1379    e. wcel 1767   (/)c0 3790   class class class wbr 4453  (class class class)co 6295   omcom 6695   1oc1o 7135    +o coa 7139   N.cnpi 9234    +N cpli 9235    <N clti 9237
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4574  ax-nul 4582  ax-pow 4631  ax-pr 4692  ax-un 6587
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2822  df-rex 2823  df-reu 2824  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-pss 3497  df-nul 3791  df-if 3946  df-pw 4018  df-sn 4034  df-pr 4036  df-tp 4038  df-op 4040  df-uni 4252  df-iun 4333  df-br 4454  df-opab 4512  df-mpt 4513  df-tr 4547  df-eprel 4797  df-id 4801  df-po 4806  df-so 4807  df-fr 4844  df-we 4846  df-ord 4887  df-on 4888  df-lim 4889  df-suc 4890  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-rn 5016  df-res 5017  df-ima 5018  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-ov 6298  df-oprab 6299  df-mpt2 6300  df-om 6696  df-recs 7054  df-rdg 7088  df-1o 7142  df-oadd 7146  df-ni 9262  df-pli 9263  df-lti 9265
This theorem is referenced by:  1lt2nq  9363
  Copyright terms: Public domain W3C validator