MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1idsr Structured version   Unicode version

Theorem 1idsr 9425
Description: 1 is an identity element for multiplication. (Contributed by NM, 2-May-1996.) (New usage is discouraged.)
Assertion
Ref Expression
1idsr  |-  ( A  e.  R.  ->  ( A  .R  1R )  =  A )

Proof of Theorem 1idsr
Dummy variables  x  y  z  w  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nr 9384 . 2  |-  R.  =  ( ( P.  X.  P. ) /.  ~R  )
2 oveq1 6241 . . 3  |-  ( [
<. x ,  y >. ]  ~R  =  A  -> 
( [ <. x ,  y >. ]  ~R  .R 
1R )  =  ( A  .R  1R )
)
3 id 22 . . 3  |-  ( [
<. x ,  y >. ]  ~R  =  A  ->  [ <. x ,  y
>. ]  ~R  =  A )
42, 3eqeq12d 2424 . 2  |-  ( [
<. x ,  y >. ]  ~R  =  A  -> 
( ( [ <. x ,  y >. ]  ~R  .R 
1R )  =  [ <. x ,  y >. ]  ~R  <->  ( A  .R  1R )  =  A
) )
5 df-1r 9389 . . . 4  |-  1R  =  [ <. ( 1P  +P.  1P ) ,  1P >. ]  ~R
65oveq2i 6245 . . 3  |-  ( [
<. x ,  y >. ]  ~R  .R  1R )  =  ( [ <. x ,  y >. ]  ~R  .R 
[ <. ( 1P  +P.  1P ) ,  1P >. ]  ~R  )
7 1pr 9343 . . . . . 6  |-  1P  e.  P.
8 addclpr 9346 . . . . . 6  |-  ( ( 1P  e.  P.  /\  1P  e.  P. )  -> 
( 1P  +P.  1P )  e.  P. )
97, 7, 8mp2an 670 . . . . 5  |-  ( 1P 
+P.  1P )  e.  P.
10 mulsrpr 9403 . . . . 5  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( ( 1P  +P.  1P )  e.  P.  /\  1P  e.  P. ) )  ->  ( [ <. x ,  y >. ]  ~R  .R 
[ <. ( 1P  +P.  1P ) ,  1P >. ]  ~R  )  =  [ <. ( ( x  .P.  ( 1P  +P.  1P ) )  +P.  ( y  .P.  1P ) ) ,  ( ( x  .P.  1P )  +P.  ( y  .P.  ( 1P  +P.  1P ) ) ) >. ]  ~R  )
119, 7, 10mpanr12 683 . . . 4  |-  ( ( x  e.  P.  /\  y  e.  P. )  ->  ( [ <. x ,  y >. ]  ~R  .R 
[ <. ( 1P  +P.  1P ) ,  1P >. ]  ~R  )  =  [ <. ( ( x  .P.  ( 1P  +P.  1P ) )  +P.  ( y  .P.  1P ) ) ,  ( ( x  .P.  1P )  +P.  ( y  .P.  ( 1P  +P.  1P ) ) ) >. ]  ~R  )
12 distrpr 9356 . . . . . . . 8  |-  ( x  .P.  ( 1P  +P.  1P ) )  =  ( ( x  .P.  1P )  +P.  ( x  .P.  1P ) )
13 1idpr 9357 . . . . . . . . 9  |-  ( x  e.  P.  ->  (
x  .P.  1P )  =  x )
1413oveq1d 6249 . . . . . . . 8  |-  ( x  e.  P.  ->  (
( x  .P.  1P )  +P.  ( x  .P.  1P ) )  =  ( x  +P.  ( x  .P.  1P ) ) )
1512, 14syl5req 2456 . . . . . . 7  |-  ( x  e.  P.  ->  (
x  +P.  ( x  .P.  1P ) )  =  ( x  .P.  ( 1P  +P.  1P ) ) )
16 distrpr 9356 . . . . . . . 8  |-  ( y  .P.  ( 1P  +P.  1P ) )  =  ( ( y  .P.  1P )  +P.  ( y  .P. 
1P ) )
17 1idpr 9357 . . . . . . . . 9  |-  ( y  e.  P.  ->  (
y  .P.  1P )  =  y )
1817oveq1d 6249 . . . . . . . 8  |-  ( y  e.  P.  ->  (
( y  .P.  1P )  +P.  ( y  .P. 
1P ) )  =  ( y  +P.  (
y  .P.  1P )
) )
1916, 18syl5eq 2455 . . . . . . 7  |-  ( y  e.  P.  ->  (
y  .P.  ( 1P  +P.  1P ) )  =  ( y  +P.  (
y  .P.  1P )
) )
2015, 19oveqan12d 6253 . . . . . 6  |-  ( ( x  e.  P.  /\  y  e.  P. )  ->  ( ( x  +P.  ( x  .P.  1P ) )  +P.  ( y  .P.  ( 1P  +P.  1P ) ) )  =  ( ( x  .P.  ( 1P  +P.  1P ) )  +P.  ( y  +P.  ( y  .P. 
1P ) ) ) )
21 addasspr 9350 . . . . . 6  |-  ( ( x  +P.  ( x  .P.  1P ) )  +P.  ( y  .P.  ( 1P  +P.  1P ) ) )  =  ( x  +P.  (
( x  .P.  1P )  +P.  ( y  .P.  ( 1P  +P.  1P ) ) ) )
22 ovex 6262 . . . . . . 7  |-  ( x  .P.  ( 1P  +P.  1P ) )  e.  _V
23 vex 3061 . . . . . . 7  |-  y  e. 
_V
24 ovex 6262 . . . . . . 7  |-  ( y  .P.  1P )  e. 
_V
25 addcompr 9349 . . . . . . 7  |-  ( z  +P.  w )  =  ( w  +P.  z
)
26 addasspr 9350 . . . . . . 7  |-  ( ( z  +P.  w )  +P.  v )  =  ( z  +P.  (
w  +P.  v )
)
2722, 23, 24, 25, 26caov12 6440 . . . . . 6  |-  ( ( x  .P.  ( 1P 
+P.  1P ) )  +P.  ( y  +P.  (
y  .P.  1P )
) )  =  ( y  +P.  ( ( x  .P.  ( 1P 
+P.  1P ) )  +P.  ( y  .P.  1P ) ) )
2820, 21, 273eqtr3g 2466 . . . . 5  |-  ( ( x  e.  P.  /\  y  e.  P. )  ->  ( x  +P.  (
( x  .P.  1P )  +P.  ( y  .P.  ( 1P  +P.  1P ) ) ) )  =  ( y  +P.  ( ( x  .P.  ( 1P  +P.  1P ) )  +P.  ( y  .P.  1P ) ) ) )
29 mulclpr 9348 . . . . . . . . . 10  |-  ( ( x  e.  P.  /\  ( 1P  +P.  1P )  e.  P. )  -> 
( x  .P.  ( 1P  +P.  1P ) )  e.  P. )
309, 29mpan2 669 . . . . . . . . 9  |-  ( x  e.  P.  ->  (
x  .P.  ( 1P  +P.  1P ) )  e. 
P. )
31 mulclpr 9348 . . . . . . . . . 10  |-  ( ( y  e.  P.  /\  1P  e.  P. )  -> 
( y  .P.  1P )  e.  P. )
327, 31mpan2 669 . . . . . . . . 9  |-  ( y  e.  P.  ->  (
y  .P.  1P )  e.  P. )
33 addclpr 9346 . . . . . . . . 9  |-  ( ( ( x  .P.  ( 1P  +P.  1P ) )  e.  P.  /\  (
y  .P.  1P )  e.  P. )  ->  (
( x  .P.  ( 1P  +P.  1P ) )  +P.  ( y  .P. 
1P ) )  e. 
P. )
3430, 32, 33syl2an 475 . . . . . . . 8  |-  ( ( x  e.  P.  /\  y  e.  P. )  ->  ( ( x  .P.  ( 1P  +P.  1P ) )  +P.  ( y  .P.  1P ) )  e.  P. )
35 mulclpr 9348 . . . . . . . . . 10  |-  ( ( x  e.  P.  /\  1P  e.  P. )  -> 
( x  .P.  1P )  e.  P. )
367, 35mpan2 669 . . . . . . . . 9  |-  ( x  e.  P.  ->  (
x  .P.  1P )  e.  P. )
37 mulclpr 9348 . . . . . . . . . 10  |-  ( ( y  e.  P.  /\  ( 1P  +P.  1P )  e.  P. )  -> 
( y  .P.  ( 1P  +P.  1P ) )  e.  P. )
389, 37mpan2 669 . . . . . . . . 9  |-  ( y  e.  P.  ->  (
y  .P.  ( 1P  +P.  1P ) )  e. 
P. )
39 addclpr 9346 . . . . . . . . 9  |-  ( ( ( x  .P.  1P )  e.  P.  /\  (
y  .P.  ( 1P  +P.  1P ) )  e. 
P. )  ->  (
( x  .P.  1P )  +P.  ( y  .P.  ( 1P  +P.  1P ) ) )  e. 
P. )
4036, 38, 39syl2an 475 . . . . . . . 8  |-  ( ( x  e.  P.  /\  y  e.  P. )  ->  ( ( x  .P.  1P )  +P.  ( y  .P.  ( 1P  +P.  1P ) ) )  e. 
P. )
4134, 40anim12i 564 . . . . . . 7  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( x  e.  P.  /\  y  e.  P. )
)  ->  ( (
( x  .P.  ( 1P  +P.  1P ) )  +P.  ( y  .P. 
1P ) )  e. 
P.  /\  ( (
x  .P.  1P )  +P.  ( y  .P.  ( 1P  +P.  1P ) ) )  e.  P. )
)
42 enreceq 9393 . . . . . . 7  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( ( ( x  .P.  ( 1P  +P.  1P ) )  +P.  (
y  .P.  1P )
)  e.  P.  /\  ( ( x  .P.  1P )  +P.  ( y  .P.  ( 1P  +P.  1P ) ) )  e. 
P. ) )  -> 
( [ <. x ,  y >. ]  ~R  =  [ <. ( ( x  .P.  ( 1P  +P.  1P ) )  +P.  (
y  .P.  1P )
) ,  ( ( x  .P.  1P )  +P.  ( y  .P.  ( 1P  +P.  1P ) ) ) >. ]  ~R  <->  ( x  +P.  ( ( x  .P.  1P )  +P.  ( y  .P.  ( 1P  +P.  1P ) ) ) )  =  ( y  +P.  ( ( x  .P.  ( 1P  +P.  1P ) )  +P.  ( y  .P.  1P ) ) ) ) )
4341, 42syldan 468 . . . . . 6  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( x  e.  P.  /\  y  e.  P. )
)  ->  ( [ <. x ,  y >. ]  ~R  =  [ <. ( ( x  .P.  ( 1P  +P.  1P ) )  +P.  ( y  .P. 
1P ) ) ,  ( ( x  .P.  1P )  +P.  ( y  .P.  ( 1P  +P.  1P ) ) ) >. ]  ~R  <->  ( x  +P.  ( ( x  .P.  1P )  +P.  ( y  .P.  ( 1P  +P.  1P ) ) ) )  =  ( y  +P.  ( ( x  .P.  ( 1P  +P.  1P ) )  +P.  ( y  .P.  1P ) ) ) ) )
4443anidms 643 . . . . 5  |-  ( ( x  e.  P.  /\  y  e.  P. )  ->  ( [ <. x ,  y >. ]  ~R  =  [ <. ( ( x  .P.  ( 1P  +P.  1P ) )  +P.  (
y  .P.  1P )
) ,  ( ( x  .P.  1P )  +P.  ( y  .P.  ( 1P  +P.  1P ) ) ) >. ]  ~R  <->  ( x  +P.  ( ( x  .P.  1P )  +P.  ( y  .P.  ( 1P  +P.  1P ) ) ) )  =  ( y  +P.  ( ( x  .P.  ( 1P  +P.  1P ) )  +P.  ( y  .P.  1P ) ) ) ) )
4528, 44mpbird 232 . . . 4  |-  ( ( x  e.  P.  /\  y  e.  P. )  ->  [ <. x ,  y
>. ]  ~R  =  [ <. ( ( x  .P.  ( 1P  +P.  1P ) )  +P.  ( y  .P.  1P ) ) ,  ( ( x  .P.  1P )  +P.  ( y  .P.  ( 1P  +P.  1P ) ) ) >. ]  ~R  )
4611, 45eqtr4d 2446 . . 3  |-  ( ( x  e.  P.  /\  y  e.  P. )  ->  ( [ <. x ,  y >. ]  ~R  .R 
[ <. ( 1P  +P.  1P ) ,  1P >. ]  ~R  )  =  [ <. x ,  y >. ]  ~R  )
476, 46syl5eq 2455 . 2  |-  ( ( x  e.  P.  /\  y  e.  P. )  ->  ( [ <. x ,  y >. ]  ~R  .R 
1R )  =  [ <. x ,  y >. ]  ~R  )
481, 4, 47ecoptocl 7358 1  |-  ( A  e.  R.  ->  ( A  .R  1R )  =  A )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367    = wceq 1405    e. wcel 1842   <.cop 3977  (class class class)co 6234   [cec 7266   P.cnp 9187   1Pc1p 9188    +P. cpp 9189    .P. cmp 9190    ~R cer 9192   R.cnr 9193   1Rc1r 9195    .R cmr 9198
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-sep 4516  ax-nul 4524  ax-pow 4571  ax-pr 4629  ax-un 6530  ax-inf2 8011
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 975  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-ral 2758  df-rex 2759  df-reu 2760  df-rmo 2761  df-rab 2762  df-v 3060  df-sbc 3277  df-csb 3373  df-dif 3416  df-un 3418  df-in 3420  df-ss 3427  df-pss 3429  df-nul 3738  df-if 3885  df-pw 3956  df-sn 3972  df-pr 3974  df-tp 3976  df-op 3978  df-uni 4191  df-int 4227  df-iun 4272  df-br 4395  df-opab 4453  df-mpt 4454  df-tr 4489  df-eprel 4733  df-id 4737  df-po 4743  df-so 4744  df-fr 4781  df-we 4783  df-ord 4824  df-on 4825  df-lim 4826  df-suc 4827  df-xp 4948  df-rel 4949  df-cnv 4950  df-co 4951  df-dm 4952  df-rn 4953  df-res 4954  df-ima 4955  df-iota 5489  df-fun 5527  df-fn 5528  df-f 5529  df-f1 5530  df-fo 5531  df-f1o 5532  df-fv 5533  df-ov 6237  df-oprab 6238  df-mpt2 6239  df-om 6639  df-1st 6738  df-2nd 6739  df-recs 6999  df-rdg 7033  df-1o 7087  df-oadd 7091  df-omul 7092  df-er 7268  df-ec 7270  df-qs 7274  df-ni 9200  df-pli 9201  df-mi 9202  df-lti 9203  df-plpq 9236  df-mpq 9237  df-ltpq 9238  df-enq 9239  df-nq 9240  df-erq 9241  df-plq 9242  df-mq 9243  df-1nq 9244  df-rq 9245  df-ltnq 9246  df-np 9309  df-1p 9310  df-plp 9311  df-mp 9312  df-ltp 9313  df-enr 9383  df-nr 9384  df-mr 9386  df-1r 9389
This theorem is referenced by:  pn0sr  9428  sqgt0sr  9433  axi2m1  9486  ax1rid  9488  axcnre  9491
  Copyright terms: Public domain W3C validator