MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1fv Structured version   Unicode version

Theorem 1fv 11906
Description: A one value function. (Contributed by Alexander van der Vekens, 3-Dec-2017.)
Assertion
Ref Expression
1fv  |-  ( ( N  e.  V  /\  P  =  { <. 0 ,  N >. } )  -> 
( P : ( 0 ... 0 ) --> V  /\  ( P `
 0 )  =  N ) )

Proof of Theorem 1fv
StepHypRef Expression
1 0z 10948 . . . . . 6  |-  0  e.  ZZ
2 f1osng 5869 . . . . . 6  |-  ( ( 0  e.  ZZ  /\  N  e.  V )  ->  { <. 0 ,  N >. } : { 0 } -1-1-onto-> { N } )
31, 2mpan 674 . . . . 5  |-  ( N  e.  V  ->  { <. 0 ,  N >. } : { 0 } -1-1-onto-> { N } )
4 f1ofo 5838 . . . . . 6  |-  ( {
<. 0 ,  N >. } : { 0 } -1-1-onto-> { N }  ->  {
<. 0 ,  N >. } : { 0 } -onto-> { N } )
5 dffo2 5814 . . . . . . 7  |-  ( {
<. 0 ,  N >. } : { 0 } -onto-> { N }  <->  ( { <. 0 ,  N >. } : { 0 } --> { N }  /\  ran  { <. 0 ,  N >. }  =  { N } ) )
65biimpi 197 . . . . . 6  |-  ( {
<. 0 ,  N >. } : { 0 } -onto-> { N }  ->  ( { <. 0 ,  N >. } : { 0 } --> { N }  /\  ran  { <. 0 ,  N >. }  =  { N } ) )
7 fzsn 11838 . . . . . . . . . . . . 13  |-  ( 0  e.  ZZ  ->  (
0 ... 0 )  =  { 0 } )
81, 7ax-mp 5 . . . . . . . . . . . 12  |-  ( 0 ... 0 )  =  { 0 }
98eqcomi 2442 . . . . . . . . . . 11  |-  { 0 }  =  ( 0 ... 0 )
109feq2i 5739 . . . . . . . . . 10  |-  ( {
<. 0 ,  N >. } : { 0 } --> { N }  <->  {
<. 0 ,  N >. } : ( 0 ... 0 ) --> { N } )
1110biimpi 197 . . . . . . . . 9  |-  ( {
<. 0 ,  N >. } : { 0 } --> { N }  ->  { <. 0 ,  N >. } : ( 0 ... 0 ) --> { N } )
12 snssi 4147 . . . . . . . . 9  |-  ( N  e.  V  ->  { N }  C_  V )
13 fss 5754 . . . . . . . . 9  |-  ( ( { <. 0 ,  N >. } : ( 0 ... 0 ) --> { N }  /\  { N }  C_  V )  ->  { <. 0 ,  N >. } : ( 0 ... 0 ) --> V )
1411, 12, 13syl2an 479 . . . . . . . 8  |-  ( ( { <. 0 ,  N >. } : { 0 } --> { N }  /\  N  e.  V
)  ->  { <. 0 ,  N >. } : ( 0 ... 0 ) --> V )
1514ex 435 . . . . . . 7  |-  ( {
<. 0 ,  N >. } : { 0 } --> { N }  ->  ( N  e.  V  ->  { <. 0 ,  N >. } : ( 0 ... 0 ) --> V ) )
1615adantr 466 . . . . . 6  |-  ( ( { <. 0 ,  N >. } : { 0 } --> { N }  /\  ran  { <. 0 ,  N >. }  =  { N } )  ->  ( N  e.  V  ->  {
<. 0 ,  N >. } : ( 0 ... 0 ) --> V ) )
174, 6, 163syl 18 . . . . 5  |-  ( {
<. 0 ,  N >. } : { 0 } -1-1-onto-> { N }  ->  ( N  e.  V  ->  { <. 0 ,  N >. } : ( 0 ... 0 ) --> V ) )
183, 17mpcom 37 . . . 4  |-  ( N  e.  V  ->  { <. 0 ,  N >. } : ( 0 ... 0 ) --> V )
19 fvsng 6113 . . . . 5  |-  ( ( 0  e.  ZZ  /\  N  e.  V )  ->  ( { <. 0 ,  N >. } `  0
)  =  N )
201, 19mpan 674 . . . 4  |-  ( N  e.  V  ->  ( { <. 0 ,  N >. } `  0 )  =  N )
2118, 20jca 534 . . 3  |-  ( N  e.  V  ->  ( { <. 0 ,  N >. } : ( 0 ... 0 ) --> V  /\  ( { <. 0 ,  N >. } `
 0 )  =  N ) )
2221adantr 466 . 2  |-  ( ( N  e.  V  /\  P  =  { <. 0 ,  N >. } )  -> 
( { <. 0 ,  N >. } : ( 0 ... 0 ) --> V  /\  ( {
<. 0 ,  N >. } `  0 )  =  N ) )
23 feq1 5728 . . . 4  |-  ( P  =  { <. 0 ,  N >. }  ->  ( P : ( 0 ... 0 ) --> V  <->  { <. 0 ,  N >. } : ( 0 ... 0 ) --> V ) )
24 fveq1 5880 . . . . 5  |-  ( P  =  { <. 0 ,  N >. }  ->  ( P `  0 )  =  ( { <. 0 ,  N >. } `
 0 ) )
2524eqeq1d 2431 . . . 4  |-  ( P  =  { <. 0 ,  N >. }  ->  (
( P `  0
)  =  N  <->  ( { <. 0 ,  N >. } `
 0 )  =  N ) )
2623, 25anbi12d 715 . . 3  |-  ( P  =  { <. 0 ,  N >. }  ->  (
( P : ( 0 ... 0 ) --> V  /\  ( P `
 0 )  =  N )  <->  ( { <. 0 ,  N >. } : ( 0 ... 0 ) --> V  /\  ( { <. 0 ,  N >. } `  0 )  =  N ) ) )
2726adantl 467 . 2  |-  ( ( N  e.  V  /\  P  =  { <. 0 ,  N >. } )  -> 
( ( P :
( 0 ... 0
) --> V  /\  ( P `  0 )  =  N )  <->  ( { <. 0 ,  N >. } : ( 0 ... 0 ) --> V  /\  ( { <. 0 ,  N >. } `  0 )  =  N ) ) )
2822, 27mpbird 235 1  |-  ( ( N  e.  V  /\  P  =  { <. 0 ,  N >. } )  -> 
( P : ( 0 ... 0 ) --> V  /\  ( P `
 0 )  =  N ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 187    /\ wa 370    = wceq 1437    e. wcel 1870    C_ wss 3442   {csn 4002   <.cop 4008   ran crn 4855   -->wf 5597   -onto->wfo 5599   -1-1-onto->wf1o 5600   ` cfv 5601  (class class class)co 6305   0cc0 9538   ZZcz 10937   ...cfz 11782
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-8 1872  ax-9 1874  ax-10 1889  ax-11 1894  ax-12 1907  ax-13 2055  ax-ext 2407  ax-sep 4548  ax-nul 4556  ax-pow 4603  ax-pr 4661  ax-un 6597  ax-cnex 9594  ax-resscn 9595  ax-1cn 9596  ax-icn 9597  ax-addcl 9598  ax-addrcl 9599  ax-mulcl 9600  ax-mulrcl 9601  ax-i2m1 9606  ax-1ne0 9607  ax-rnegex 9609  ax-rrecex 9610  ax-cnre 9611  ax-pre-lttri 9612  ax-pre-lttrn 9613
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1790  df-eu 2270  df-mo 2271  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2579  df-ne 2627  df-nel 2628  df-ral 2787  df-rex 2788  df-rab 2791  df-v 3089  df-sbc 3306  df-csb 3402  df-dif 3445  df-un 3447  df-in 3449  df-ss 3456  df-nul 3768  df-if 3916  df-pw 3987  df-sn 4003  df-pr 4005  df-op 4009  df-uni 4223  df-iun 4304  df-br 4427  df-opab 4485  df-mpt 4486  df-id 4769  df-po 4775  df-so 4776  df-xp 4860  df-rel 4861  df-cnv 4862  df-co 4863  df-dm 4864  df-rn 4865  df-res 4866  df-ima 4867  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-ov 6308  df-oprab 6309  df-mpt2 6310  df-1st 6807  df-2nd 6808  df-er 7371  df-en 7578  df-dom 7579  df-sdom 7580  df-pnf 9676  df-mnf 9677  df-xr 9678  df-ltxr 9679  df-le 9680  df-neg 9862  df-z 10938  df-uz 11160  df-fz 11783
This theorem is referenced by:  0pthon1  25155
  Copyright terms: Public domain W3C validator