MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1arith Structured version   Visualization version   Unicode version

Theorem 1arith 14950
Description: Fundamental theorem of arithmetic, where a prime factorization is represented as a sequence of prime exponents, for which only finitely many primes have nonzero exponent. The function  M maps the set of positive integers one-to-one onto the set of prime factorizations  R. (Contributed by Paul Chapman, 17-Nov-2012.) (Proof shortened by Mario Carneiro, 30-May-2014.)
Hypotheses
Ref Expression
1arith.1  |-  M  =  ( n  e.  NN  |->  ( p  e.  Prime  |->  ( p  pCnt  n ) ) )
1arith.2  |-  R  =  { e  e.  ( NN0  ^m  Prime )  |  ( `' e
" NN )  e. 
Fin }
Assertion
Ref Expression
1arith  |-  M : NN
-1-1-onto-> R
Distinct variable groups:    e, n, p    e, M    R, n
Allowed substitution hints:    R( e, p)    M( n, p)

Proof of Theorem 1arith
Dummy variables  f 
g  k  q  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zex 10970 . . . . . . 7  |-  ZZ  e.  _V
2 prmz 14705 . . . . . . . 8  |-  ( q  e.  Prime  ->  q  e.  ZZ )
32ssriv 3422 . . . . . . 7  |-  Prime  C_  ZZ
41, 3ssexi 4541 . . . . . 6  |-  Prime  e.  _V
54mptex 6152 . . . . 5  |-  ( p  e.  Prime  |->  ( p 
pCnt  n ) )  e. 
_V
6 1arith.1 . . . . 5  |-  M  =  ( n  e.  NN  |->  ( p  e.  Prime  |->  ( p  pCnt  n ) ) )
75, 6fnmpti 5716 . . . 4  |-  M  Fn  NN
861arithlem3 14948 . . . . . . 7  |-  ( x  e.  NN  ->  ( M `  x ) : Prime --> NN0 )
9 nn0ex 10899 . . . . . . . 8  |-  NN0  e.  _V
109, 4elmap 7518 . . . . . . 7  |-  ( ( M `  x )  e.  ( NN0  ^m  Prime )  <->  ( M `  x ) : Prime --> NN0 )
118, 10sylibr 217 . . . . . 6  |-  ( x  e.  NN  ->  ( M `  x )  e.  ( NN0  ^m  Prime ) )
12 fzfi 12223 . . . . . . 7  |-  ( 1 ... x )  e. 
Fin
13 ffn 5739 . . . . . . . . . 10  |-  ( ( M `  x ) : Prime --> NN0  ->  ( M `  x )  Fn  Prime )
14 elpreima 6017 . . . . . . . . . 10  |-  ( ( M `  x )  Fn  Prime  ->  ( q  e.  ( `' ( M `  x )
" NN )  <->  ( q  e.  Prime  /\  ( ( M `  x ) `  q )  e.  NN ) ) )
158, 13, 143syl 18 . . . . . . . . 9  |-  ( x  e.  NN  ->  (
q  e.  ( `' ( M `  x
) " NN )  <-> 
( q  e.  Prime  /\  ( ( M `  x ) `  q
)  e.  NN ) ) )
1661arithlem2 14947 . . . . . . . . . . . 12  |-  ( ( x  e.  NN  /\  q  e.  Prime )  -> 
( ( M `  x ) `  q
)  =  ( q 
pCnt  x ) )
1716eleq1d 2533 . . . . . . . . . . 11  |-  ( ( x  e.  NN  /\  q  e.  Prime )  -> 
( ( ( M `
 x ) `  q )  e.  NN  <->  ( q  pCnt  x )  e.  NN ) )
18 id 22 . . . . . . . . . . . . 13  |-  ( x  e.  NN  ->  x  e.  NN )
19 dvdsle 14427 . . . . . . . . . . . . 13  |-  ( ( q  e.  ZZ  /\  x  e.  NN )  ->  ( q  ||  x  ->  q  <_  x )
)
202, 18, 19syl2anr 486 . . . . . . . . . . . 12  |-  ( ( x  e.  NN  /\  q  e.  Prime )  -> 
( q  ||  x  ->  q  <_  x )
)
21 pcelnn 14898 . . . . . . . . . . . . 13  |-  ( ( q  e.  Prime  /\  x  e.  NN )  ->  (
( q  pCnt  x
)  e.  NN  <->  q  ||  x ) )
2221ancoms 460 . . . . . . . . . . . 12  |-  ( ( x  e.  NN  /\  q  e.  Prime )  -> 
( ( q  pCnt  x )  e.  NN  <->  q  ||  x ) )
23 prmnn 14704 . . . . . . . . . . . . . 14  |-  ( q  e.  Prime  ->  q  e.  NN )
24 nnuz 11218 . . . . . . . . . . . . . 14  |-  NN  =  ( ZZ>= `  1 )
2523, 24syl6eleq 2559 . . . . . . . . . . . . 13  |-  ( q  e.  Prime  ->  q  e.  ( ZZ>= `  1 )
)
26 nnz 10983 . . . . . . . . . . . . 13  |-  ( x  e.  NN  ->  x  e.  ZZ )
27 elfz5 11818 . . . . . . . . . . . . 13  |-  ( ( q  e.  ( ZZ>= ` 
1 )  /\  x  e.  ZZ )  ->  (
q  e.  ( 1 ... x )  <->  q  <_  x ) )
2825, 26, 27syl2anr 486 . . . . . . . . . . . 12  |-  ( ( x  e.  NN  /\  q  e.  Prime )  -> 
( q  e.  ( 1 ... x )  <-> 
q  <_  x )
)
2920, 22, 283imtr4d 276 . . . . . . . . . . 11  |-  ( ( x  e.  NN  /\  q  e.  Prime )  -> 
( ( q  pCnt  x )  e.  NN  ->  q  e.  ( 1 ... x ) ) )
3017, 29sylbid 223 . . . . . . . . . 10  |-  ( ( x  e.  NN  /\  q  e.  Prime )  -> 
( ( ( M `
 x ) `  q )  e.  NN  ->  q  e.  ( 1 ... x ) ) )
3130expimpd 614 . . . . . . . . 9  |-  ( x  e.  NN  ->  (
( q  e.  Prime  /\  ( ( M `  x ) `  q
)  e.  NN )  ->  q  e.  ( 1 ... x ) ) )
3215, 31sylbid 223 . . . . . . . 8  |-  ( x  e.  NN  ->  (
q  e.  ( `' ( M `  x
) " NN )  ->  q  e.  ( 1 ... x ) ) )
3332ssrdv 3424 . . . . . . 7  |-  ( x  e.  NN  ->  ( `' ( M `  x ) " NN )  C_  ( 1 ... x ) )
34 ssfi 7810 . . . . . . 7  |-  ( ( ( 1 ... x
)  e.  Fin  /\  ( `' ( M `  x ) " NN )  C_  ( 1 ... x ) )  -> 
( `' ( M `
 x ) " NN )  e.  Fin )
3512, 33, 34sylancr 676 . . . . . 6  |-  ( x  e.  NN  ->  ( `' ( M `  x ) " NN )  e.  Fin )
36 cnveq 5013 . . . . . . . . 9  |-  ( e  =  ( M `  x )  ->  `' e  =  `' ( M `  x )
)
3736imaeq1d 5173 . . . . . . . 8  |-  ( e  =  ( M `  x )  ->  ( `' e " NN )  =  ( `' ( M `  x )
" NN ) )
3837eleq1d 2533 . . . . . . 7  |-  ( e  =  ( M `  x )  ->  (
( `' e " NN )  e.  Fin  <->  ( `' ( M `  x ) " NN )  e.  Fin )
)
39 1arith.2 . . . . . . 7  |-  R  =  { e  e.  ( NN0  ^m  Prime )  |  ( `' e
" NN )  e. 
Fin }
4038, 39elrab2 3186 . . . . . 6  |-  ( ( M `  x )  e.  R  <->  ( ( M `  x )  e.  ( NN0  ^m  Prime )  /\  ( `' ( M `  x )
" NN )  e. 
Fin ) )
4111, 35, 40sylanbrc 677 . . . . 5  |-  ( x  e.  NN  ->  ( M `  x )  e.  R )
4241rgen 2766 . . . 4  |-  A. x  e.  NN  ( M `  x )  e.  R
43 ffnfv 6064 . . . 4  |-  ( M : NN --> R  <->  ( M  Fn  NN  /\  A. x  e.  NN  ( M `  x )  e.  R
) )
447, 42, 43mpbir2an 934 . . 3  |-  M : NN
--> R
4516adantlr 729 . . . . . . . 8  |-  ( ( ( x  e.  NN  /\  y  e.  NN )  /\  q  e.  Prime )  ->  ( ( M `
 x ) `  q )  =  ( q  pCnt  x )
)
4661arithlem2 14947 . . . . . . . . 9  |-  ( ( y  e.  NN  /\  q  e.  Prime )  -> 
( ( M `  y ) `  q
)  =  ( q 
pCnt  y ) )
4746adantll 728 . . . . . . . 8  |-  ( ( ( x  e.  NN  /\  y  e.  NN )  /\  q  e.  Prime )  ->  ( ( M `
 y ) `  q )  =  ( q  pCnt  y )
)
4845, 47eqeq12d 2486 . . . . . . 7  |-  ( ( ( x  e.  NN  /\  y  e.  NN )  /\  q  e.  Prime )  ->  ( ( ( M `  x ) `
 q )  =  ( ( M `  y ) `  q
)  <->  ( q  pCnt  x )  =  ( q 
pCnt  y ) ) )
4948ralbidva 2828 . . . . . 6  |-  ( ( x  e.  NN  /\  y  e.  NN )  ->  ( A. q  e. 
Prime  ( ( M `  x ) `  q
)  =  ( ( M `  y ) `
 q )  <->  A. q  e.  Prime  ( q  pCnt  x )  =  ( q 
pCnt  y ) ) )
5061arithlem3 14948 . . . . . . 7  |-  ( y  e.  NN  ->  ( M `  y ) : Prime --> NN0 )
51 ffn 5739 . . . . . . . 8  |-  ( ( M `  y ) : Prime --> NN0  ->  ( M `  y )  Fn  Prime )
52 eqfnfv 5991 . . . . . . . 8  |-  ( ( ( M `  x
)  Fn  Prime  /\  ( M `  y )  Fn  Prime )  ->  (
( M `  x
)  =  ( M `
 y )  <->  A. q  e.  Prime  ( ( M `
 x ) `  q )  =  ( ( M `  y
) `  q )
) )
5313, 51, 52syl2an 485 . . . . . . 7  |-  ( ( ( M `  x
) : Prime --> NN0  /\  ( M `  y ) : Prime --> NN0 )  ->  ( ( M `  x )  =  ( M `  y )  <->  A. q  e.  Prime  ( ( M `  x
) `  q )  =  ( ( M `
 y ) `  q ) ) )
548, 50, 53syl2an 485 . . . . . 6  |-  ( ( x  e.  NN  /\  y  e.  NN )  ->  ( ( M `  x )  =  ( M `  y )  <->  A. q  e.  Prime  ( ( M `  x
) `  q )  =  ( ( M `
 y ) `  q ) ) )
55 nnnn0 10900 . . . . . . 7  |-  ( x  e.  NN  ->  x  e.  NN0 )
56 nnnn0 10900 . . . . . . 7  |-  ( y  e.  NN  ->  y  e.  NN0 )
57 pc11 14908 . . . . . . 7  |-  ( ( x  e.  NN0  /\  y  e.  NN0 )  -> 
( x  =  y  <->  A. q  e.  Prime  ( q  pCnt  x )  =  ( q  pCnt  y ) ) )
5855, 56, 57syl2an 485 . . . . . 6  |-  ( ( x  e.  NN  /\  y  e.  NN )  ->  ( x  =  y  <->  A. q  e.  Prime  ( q  pCnt  x )  =  ( q  pCnt  y ) ) )
5949, 54, 583bitr4d 293 . . . . 5  |-  ( ( x  e.  NN  /\  y  e.  NN )  ->  ( ( M `  x )  =  ( M `  y )  <-> 
x  =  y ) )
6059biimpd 212 . . . 4  |-  ( ( x  e.  NN  /\  y  e.  NN )  ->  ( ( M `  x )  =  ( M `  y )  ->  x  =  y ) )
6160rgen2a 2820 . . 3  |-  A. x  e.  NN  A. y  e.  NN  ( ( M `
 x )  =  ( M `  y
)  ->  x  =  y )
62 dff13 6177 . . 3  |-  ( M : NN -1-1-> R  <->  ( M : NN --> R  /\  A. x  e.  NN  A. y  e.  NN  ( ( M `
 x )  =  ( M `  y
)  ->  x  =  y ) ) )
6344, 61, 62mpbir2an 934 . 2  |-  M : NN
-1-1-> R
64 eqid 2471 . . . . . 6  |-  ( g  e.  NN  |->  if ( g  e.  Prime ,  ( g ^ ( f `
 g ) ) ,  1 ) )  =  ( g  e.  NN  |->  if ( g  e.  Prime ,  ( g ^ ( f `  g ) ) ,  1 ) )
65 cnveq 5013 . . . . . . . . . . . 12  |-  ( e  =  f  ->  `' e  =  `' f
)
6665imaeq1d 5173 . . . . . . . . . . 11  |-  ( e  =  f  ->  ( `' e " NN )  =  ( `' f " NN ) )
6766eleq1d 2533 . . . . . . . . . 10  |-  ( e  =  f  ->  (
( `' e " NN )  e.  Fin  <->  ( `' f " NN )  e.  Fin )
)
6867, 39elrab2 3186 . . . . . . . . 9  |-  ( f  e.  R  <->  ( f  e.  ( NN0  ^m  Prime )  /\  ( `' f
" NN )  e. 
Fin ) )
6968simplbi 467 . . . . . . . 8  |-  ( f  e.  R  ->  f  e.  ( NN0  ^m  Prime ) )
709, 4elmap 7518 . . . . . . . 8  |-  ( f  e.  ( NN0  ^m  Prime )  <->  f : Prime --> NN0 )
7169, 70sylib 201 . . . . . . 7  |-  ( f  e.  R  ->  f : Prime --> NN0 )
7271ad2antrr 740 . . . . . 6  |-  ( ( ( f  e.  R  /\  y  e.  RR )  /\  A. k  e.  ( `' f " NN ) k  <_  y
)  ->  f : Prime --> NN0 )
73 simplr 770 . . . . . . . . 9  |-  ( ( ( f  e.  R  /\  y  e.  RR )  /\  A. k  e.  ( `' f " NN ) k  <_  y
)  ->  y  e.  RR )
74 0re 9661 . . . . . . . . 9  |-  0  e.  RR
75 ifcl 3914 . . . . . . . . 9  |-  ( ( y  e.  RR  /\  0  e.  RR )  ->  if ( 0  <_ 
y ,  y ,  0 )  e.  RR )
7673, 74, 75sylancl 675 . . . . . . . 8  |-  ( ( ( f  e.  R  /\  y  e.  RR )  /\  A. k  e.  ( `' f " NN ) k  <_  y
)  ->  if (
0  <_  y , 
y ,  0 )  e.  RR )
77 max1 11503 . . . . . . . . 9  |-  ( ( 0  e.  RR  /\  y  e.  RR )  ->  0  <_  if (
0  <_  y , 
y ,  0 ) )
7874, 73, 77sylancr 676 . . . . . . . 8  |-  ( ( ( f  e.  R  /\  y  e.  RR )  /\  A. k  e.  ( `' f " NN ) k  <_  y
)  ->  0  <_  if ( 0  <_  y ,  y ,  0 ) )
79 flge0nn0 12087 . . . . . . . 8  |-  ( ( if ( 0  <_ 
y ,  y ,  0 )  e.  RR  /\  0  <_  if (
0  <_  y , 
y ,  0 ) )  ->  ( |_ `  if ( 0  <_ 
y ,  y ,  0 ) )  e. 
NN0 )
8076, 78, 79syl2anc 673 . . . . . . 7  |-  ( ( ( f  e.  R  /\  y  e.  RR )  /\  A. k  e.  ( `' f " NN ) k  <_  y
)  ->  ( |_ `  if ( 0  <_ 
y ,  y ,  0 ) )  e. 
NN0 )
81 nn0p1nn 10933 . . . . . . 7  |-  ( ( |_ `  if ( 0  <_  y , 
y ,  0 ) )  e.  NN0  ->  ( ( |_ `  if ( 0  <_  y ,  y ,  0 ) )  +  1 )  e.  NN )
8280, 81syl 17 . . . . . 6  |-  ( ( ( f  e.  R  /\  y  e.  RR )  /\  A. k  e.  ( `' f " NN ) k  <_  y
)  ->  ( ( |_ `  if ( 0  <_  y ,  y ,  0 ) )  +  1 )  e.  NN )
8373adantr 472 . . . . . . . . . 10  |-  ( ( ( ( f  e.  R  /\  y  e.  RR )  /\  A. k  e.  ( `' f " NN ) k  <_  y )  /\  ( q  e.  Prime  /\  ( ( |_ `  if ( 0  <_  y ,  y ,  0 ) )  +  1 )  <_  q )
)  ->  y  e.  RR )
8482adantr 472 . . . . . . . . . . 11  |-  ( ( ( ( f  e.  R  /\  y  e.  RR )  /\  A. k  e.  ( `' f " NN ) k  <_  y )  /\  ( q  e.  Prime  /\  ( ( |_ `  if ( 0  <_  y ,  y ,  0 ) )  +  1 )  <_  q )
)  ->  ( ( |_ `  if ( 0  <_  y ,  y ,  0 ) )  +  1 )  e.  NN )
8584nnred 10646 . . . . . . . . . 10  |-  ( ( ( ( f  e.  R  /\  y  e.  RR )  /\  A. k  e.  ( `' f " NN ) k  <_  y )  /\  ( q  e.  Prime  /\  ( ( |_ `  if ( 0  <_  y ,  y ,  0 ) )  +  1 )  <_  q )
)  ->  ( ( |_ `  if ( 0  <_  y ,  y ,  0 ) )  +  1 )  e.  RR )
86 zssre 10968 . . . . . . . . . . . 12  |-  ZZ  C_  RR
873, 86sstri 3427 . . . . . . . . . . 11  |-  Prime  C_  RR
88 simprl 772 . . . . . . . . . . 11  |-  ( ( ( ( f  e.  R  /\  y  e.  RR )  /\  A. k  e.  ( `' f " NN ) k  <_  y )  /\  ( q  e.  Prime  /\  ( ( |_ `  if ( 0  <_  y ,  y ,  0 ) )  +  1 )  <_  q )
)  ->  q  e.  Prime )
8987, 88sseldi 3416 . . . . . . . . . 10  |-  ( ( ( ( f  e.  R  /\  y  e.  RR )  /\  A. k  e.  ( `' f " NN ) k  <_  y )  /\  ( q  e.  Prime  /\  ( ( |_ `  if ( 0  <_  y ,  y ,  0 ) )  +  1 )  <_  q )
)  ->  q  e.  RR )
9076adantr 472 . . . . . . . . . . 11  |-  ( ( ( ( f  e.  R  /\  y  e.  RR )  /\  A. k  e.  ( `' f " NN ) k  <_  y )  /\  ( q  e.  Prime  /\  ( ( |_ `  if ( 0  <_  y ,  y ,  0 ) )  +  1 )  <_  q )
)  ->  if (
0  <_  y , 
y ,  0 )  e.  RR )
91 max2 11505 . . . . . . . . . . . 12  |-  ( ( 0  e.  RR  /\  y  e.  RR )  ->  y  <_  if (
0  <_  y , 
y ,  0 ) )
9274, 83, 91sylancr 676 . . . . . . . . . . 11  |-  ( ( ( ( f  e.  R  /\  y  e.  RR )  /\  A. k  e.  ( `' f " NN ) k  <_  y )  /\  ( q  e.  Prime  /\  ( ( |_ `  if ( 0  <_  y ,  y ,  0 ) )  +  1 )  <_  q )
)  ->  y  <_  if ( 0  <_  y ,  y ,  0 ) )
93 flltp1 12069 . . . . . . . . . . . 12  |-  ( if ( 0  <_  y ,  y ,  0 )  e.  RR  ->  if ( 0  <_  y ,  y ,  0 )  <  ( ( |_ `  if ( 0  <_  y , 
y ,  0 ) )  +  1 ) )
9490, 93syl 17 . . . . . . . . . . 11  |-  ( ( ( ( f  e.  R  /\  y  e.  RR )  /\  A. k  e.  ( `' f " NN ) k  <_  y )  /\  ( q  e.  Prime  /\  ( ( |_ `  if ( 0  <_  y ,  y ,  0 ) )  +  1 )  <_  q )
)  ->  if (
0  <_  y , 
y ,  0 )  <  ( ( |_
`  if ( 0  <_  y ,  y ,  0 ) )  +  1 ) )
9583, 90, 85, 92, 94lelttrd 9810 . . . . . . . . . 10  |-  ( ( ( ( f  e.  R  /\  y  e.  RR )  /\  A. k  e.  ( `' f " NN ) k  <_  y )  /\  ( q  e.  Prime  /\  ( ( |_ `  if ( 0  <_  y ,  y ,  0 ) )  +  1 )  <_  q )
)  ->  y  <  ( ( |_ `  if ( 0  <_  y ,  y ,  0 ) )  +  1 ) )
96 simprr 774 . . . . . . . . . 10  |-  ( ( ( ( f  e.  R  /\  y  e.  RR )  /\  A. k  e.  ( `' f " NN ) k  <_  y )  /\  ( q  e.  Prime  /\  ( ( |_ `  if ( 0  <_  y ,  y ,  0 ) )  +  1 )  <_  q )
)  ->  ( ( |_ `  if ( 0  <_  y ,  y ,  0 ) )  +  1 )  <_ 
q )
9783, 85, 89, 95, 96ltletrd 9812 . . . . . . . . 9  |-  ( ( ( ( f  e.  R  /\  y  e.  RR )  /\  A. k  e.  ( `' f " NN ) k  <_  y )  /\  ( q  e.  Prime  /\  ( ( |_ `  if ( 0  <_  y ,  y ,  0 ) )  +  1 )  <_  q )
)  ->  y  <  q )
9883, 89ltnled 9799 . . . . . . . . 9  |-  ( ( ( ( f  e.  R  /\  y  e.  RR )  /\  A. k  e.  ( `' f " NN ) k  <_  y )  /\  ( q  e.  Prime  /\  ( ( |_ `  if ( 0  <_  y ,  y ,  0 ) )  +  1 )  <_  q )
)  ->  ( y  <  q  <->  -.  q  <_  y ) )
9997, 98mpbid 215 . . . . . . . 8  |-  ( ( ( ( f  e.  R  /\  y  e.  RR )  /\  A. k  e.  ( `' f " NN ) k  <_  y )  /\  ( q  e.  Prime  /\  ( ( |_ `  if ( 0  <_  y ,  y ,  0 ) )  +  1 )  <_  q )
)  ->  -.  q  <_  y )
10088biantrurd 516 . . . . . . . . . 10  |-  ( ( ( ( f  e.  R  /\  y  e.  RR )  /\  A. k  e.  ( `' f " NN ) k  <_  y )  /\  ( q  e.  Prime  /\  ( ( |_ `  if ( 0  <_  y ,  y ,  0 ) )  +  1 )  <_  q )
)  ->  ( (
f `  q )  e.  NN  <->  ( q  e. 
Prime  /\  ( f `  q )  e.  NN ) ) )
10172adantr 472 . . . . . . . . . . 11  |-  ( ( ( ( f  e.  R  /\  y  e.  RR )  /\  A. k  e.  ( `' f " NN ) k  <_  y )  /\  ( q  e.  Prime  /\  ( ( |_ `  if ( 0  <_  y ,  y ,  0 ) )  +  1 )  <_  q )
)  ->  f : Prime --> NN0 )
102 ffn 5739 . . . . . . . . . . 11  |-  ( f : Prime --> NN0  ->  f  Fn  Prime )
103 elpreima 6017 . . . . . . . . . . 11  |-  ( f  Fn  Prime  ->  ( q  e.  ( `' f
" NN )  <->  ( q  e.  Prime  /\  ( f `  q )  e.  NN ) ) )
104101, 102, 1033syl 18 . . . . . . . . . 10  |-  ( ( ( ( f  e.  R  /\  y  e.  RR )  /\  A. k  e.  ( `' f " NN ) k  <_  y )  /\  ( q  e.  Prime  /\  ( ( |_ `  if ( 0  <_  y ,  y ,  0 ) )  +  1 )  <_  q )
)  ->  ( q  e.  ( `' f " NN )  <->  ( q  e. 
Prime  /\  ( f `  q )  e.  NN ) ) )
105100, 104bitr4d 264 . . . . . . . . 9  |-  ( ( ( ( f  e.  R  /\  y  e.  RR )  /\  A. k  e.  ( `' f " NN ) k  <_  y )  /\  ( q  e.  Prime  /\  ( ( |_ `  if ( 0  <_  y ,  y ,  0 ) )  +  1 )  <_  q )
)  ->  ( (
f `  q )  e.  NN  <->  q  e.  ( `' f " NN ) ) )
106 simplr 770 . . . . . . . . . 10  |-  ( ( ( ( f  e.  R  /\  y  e.  RR )  /\  A. k  e.  ( `' f " NN ) k  <_  y )  /\  ( q  e.  Prime  /\  ( ( |_ `  if ( 0  <_  y ,  y ,  0 ) )  +  1 )  <_  q )
)  ->  A. k  e.  ( `' f " NN ) k  <_  y
)
107 breq1 4398 . . . . . . . . . . 11  |-  ( k  =  q  ->  (
k  <_  y  <->  q  <_  y ) )
108107rspccv 3133 . . . . . . . . . 10  |-  ( A. k  e.  ( `' f " NN ) k  <_  y  ->  (
q  e.  ( `' f " NN )  ->  q  <_  y
) )
109106, 108syl 17 . . . . . . . . 9  |-  ( ( ( ( f  e.  R  /\  y  e.  RR )  /\  A. k  e.  ( `' f " NN ) k  <_  y )  /\  ( q  e.  Prime  /\  ( ( |_ `  if ( 0  <_  y ,  y ,  0 ) )  +  1 )  <_  q )
)  ->  ( q  e.  ( `' f " NN )  ->  q  <_ 
y ) )
110105, 109sylbid 223 . . . . . . . 8  |-  ( ( ( ( f  e.  R  /\  y  e.  RR )  /\  A. k  e.  ( `' f " NN ) k  <_  y )  /\  ( q  e.  Prime  /\  ( ( |_ `  if ( 0  <_  y ,  y ,  0 ) )  +  1 )  <_  q )
)  ->  ( (
f `  q )  e.  NN  ->  q  <_  y ) )
11199, 110mtod 182 . . . . . . 7  |-  ( ( ( ( f  e.  R  /\  y  e.  RR )  /\  A. k  e.  ( `' f " NN ) k  <_  y )  /\  ( q  e.  Prime  /\  ( ( |_ `  if ( 0  <_  y ,  y ,  0 ) )  +  1 )  <_  q )
)  ->  -.  (
f `  q )  e.  NN )
112101, 88ffvelrnd 6038 . . . . . . . . 9  |-  ( ( ( ( f  e.  R  /\  y  e.  RR )  /\  A. k  e.  ( `' f " NN ) k  <_  y )  /\  ( q  e.  Prime  /\  ( ( |_ `  if ( 0  <_  y ,  y ,  0 ) )  +  1 )  <_  q )
)  ->  ( f `  q )  e.  NN0 )
113 elnn0 10895 . . . . . . . . 9  |-  ( ( f `  q )  e.  NN0  <->  ( ( f `
 q )  e.  NN  \/  ( f `
 q )  =  0 ) )
114112, 113sylib 201 . . . . . . . 8  |-  ( ( ( ( f  e.  R  /\  y  e.  RR )  /\  A. k  e.  ( `' f " NN ) k  <_  y )  /\  ( q  e.  Prime  /\  ( ( |_ `  if ( 0  <_  y ,  y ,  0 ) )  +  1 )  <_  q )
)  ->  ( (
f `  q )  e.  NN  \/  ( f `
 q )  =  0 ) )
115114ord 384 . . . . . . 7  |-  ( ( ( ( f  e.  R  /\  y  e.  RR )  /\  A. k  e.  ( `' f " NN ) k  <_  y )  /\  ( q  e.  Prime  /\  ( ( |_ `  if ( 0  <_  y ,  y ,  0 ) )  +  1 )  <_  q )
)  ->  ( -.  ( f `  q
)  e.  NN  ->  ( f `  q )  =  0 ) )
116111, 115mpd 15 . . . . . 6  |-  ( ( ( ( f  e.  R  /\  y  e.  RR )  /\  A. k  e.  ( `' f " NN ) k  <_  y )  /\  ( q  e.  Prime  /\  ( ( |_ `  if ( 0  <_  y ,  y ,  0 ) )  +  1 )  <_  q )
)  ->  ( f `  q )  =  0 )
1176, 64, 72, 82, 1161arithlem4 14949 . . . . 5  |-  ( ( ( f  e.  R  /\  y  e.  RR )  /\  A. k  e.  ( `' f " NN ) k  <_  y
)  ->  E. x  e.  NN  f  =  ( M `  x ) )
118 cnvimass 5194 . . . . . . 7  |-  ( `' f " NN ) 
C_  dom  f
119 fdm 5745 . . . . . . . . 9  |-  ( f : Prime --> NN0  ->  dom  f  =  Prime )
12071, 119syl 17 . . . . . . . 8  |-  ( f  e.  R  ->  dom  f  =  Prime )
121120, 87syl6eqss 3468 . . . . . . 7  |-  ( f  e.  R  ->  dom  f  C_  RR )
122118, 121syl5ss 3429 . . . . . 6  |-  ( f  e.  R  ->  ( `' f " NN )  C_  RR )
12368simprbi 471 . . . . . 6  |-  ( f  e.  R  ->  ( `' f " NN )  e.  Fin )
124 fimaxre2 10574 . . . . . 6  |-  ( ( ( `' f " NN )  C_  RR  /\  ( `' f " NN )  e.  Fin )  ->  E. y  e.  RR  A. k  e.  ( `' f " NN ) k  <_  y )
125122, 123, 124syl2anc 673 . . . . 5  |-  ( f  e.  R  ->  E. y  e.  RR  A. k  e.  ( `' f " NN ) k  <_  y
)
126117, 125r19.29a 2918 . . . 4  |-  ( f  e.  R  ->  E. x  e.  NN  f  =  ( M `  x ) )
127126rgen 2766 . . 3  |-  A. f  e.  R  E. x  e.  NN  f  =  ( M `  x )
128 dffo3 6052 . . 3  |-  ( M : NN -onto-> R  <->  ( M : NN --> R  /\  A. f  e.  R  E. x  e.  NN  f  =  ( M `  x ) ) )
12944, 127, 128mpbir2an 934 . 2  |-  M : NN -onto-> R
130 df-f1o 5596 . 2  |-  ( M : NN -1-1-onto-> R  <->  ( M : NN
-1-1-> R  /\  M : NN -onto-> R ) )
13163, 129, 130mpbir2an 934 1  |-  M : NN
-1-1-onto-> R
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 189    \/ wo 375    /\ wa 376    = wceq 1452    e. wcel 1904   A.wral 2756   E.wrex 2757   {crab 2760    C_ wss 3390   ifcif 3872   class class class wbr 4395    |-> cmpt 4454   `'ccnv 4838   dom cdm 4839   "cima 4842    Fn wfn 5584   -->wf 5585   -1-1->wf1 5586   -onto->wfo 5587   -1-1-onto->wf1o 5588   ` cfv 5589  (class class class)co 6308    ^m cmap 7490   Fincfn 7587   RRcr 9556   0cc0 9557   1c1 9558    + caddc 9560    < clt 9693    <_ cle 9694   NNcn 10631   NN0cn0 10893   ZZcz 10961   ZZ>=cuz 11182   ...cfz 11810   |_cfl 12059   ^cexp 12310    || cdvds 14382   Primecprime 14701    pCnt cpc 14865
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-rep 4508  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602  ax-cnex 9613  ax-resscn 9614  ax-1cn 9615  ax-icn 9616  ax-addcl 9617  ax-addrcl 9618  ax-mulcl 9619  ax-mulrcl 9620  ax-mulcom 9621  ax-addass 9622  ax-mulass 9623  ax-distr 9624  ax-i2m1 9625  ax-1ne0 9626  ax-1rid 9627  ax-rnegex 9628  ax-rrecex 9629  ax-cnre 9630  ax-pre-lttri 9631  ax-pre-lttrn 9632  ax-pre-ltadd 9633  ax-pre-mulgt0 9634  ax-pre-sup 9635
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-fal 1458  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-nel 2644  df-ral 2761  df-rex 2762  df-reu 2763  df-rmo 2764  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-pss 3406  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-tp 3964  df-op 3966  df-uni 4191  df-int 4227  df-iun 4271  df-br 4396  df-opab 4455  df-mpt 4456  df-tr 4491  df-eprel 4750  df-id 4754  df-po 4760  df-so 4761  df-fr 4798  df-we 4800  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-pred 5387  df-ord 5433  df-on 5434  df-lim 5435  df-suc 5436  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-riota 6270  df-ov 6311  df-oprab 6312  df-mpt2 6313  df-om 6712  df-1st 6812  df-2nd 6813  df-wrecs 7046  df-recs 7108  df-rdg 7146  df-1o 7200  df-2o 7201  df-oadd 7204  df-er 7381  df-map 7492  df-en 7588  df-dom 7589  df-sdom 7590  df-fin 7591  df-sup 7974  df-inf 7975  df-pnf 9695  df-mnf 9696  df-xr 9697  df-ltxr 9698  df-le 9699  df-sub 9882  df-neg 9883  df-div 10292  df-nn 10632  df-2 10690  df-3 10691  df-n0 10894  df-z 10962  df-uz 11183  df-q 11288  df-rp 11326  df-fz 11811  df-fl 12061  df-mod 12130  df-seq 12252  df-exp 12311  df-cj 13239  df-re 13240  df-im 13241  df-sqrt 13375  df-abs 13376  df-dvds 14383  df-gcd 14548  df-prm 14702  df-pc 14866
This theorem is referenced by:  1arith2  14951  sqff1o  24188
  Copyright terms: Public domain W3C validator