MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1arith Structured version   Unicode version

Theorem 1arith 14099
Description: Fundamental theorem of arithmetic, where a prime factorization is represented as a sequence of prime exponents, for which only finitely many primes have nonzero exponent. The function  M maps the set of positive integers one-to-one onto the set of prime factorizations  R. (Contributed by Paul Chapman, 17-Nov-2012.) (Proof shortened by Mario Carneiro, 30-May-2014.)
Hypotheses
Ref Expression
1arith.1  |-  M  =  ( n  e.  NN  |->  ( p  e.  Prime  |->  ( p  pCnt  n ) ) )
1arith.2  |-  R  =  { e  e.  ( NN0  ^m  Prime )  |  ( `' e
" NN )  e. 
Fin }
Assertion
Ref Expression
1arith  |-  M : NN
-1-1-onto-> R
Distinct variable groups:    e, n, p    e, M    R, n
Allowed substitution hints:    R( e, p)    M( n, p)

Proof of Theorem 1arith
Dummy variables  f 
g  k  q  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zex 10759 . . . . . . 7  |-  ZZ  e.  _V
2 prmz 13878 . . . . . . . 8  |-  ( q  e.  Prime  ->  q  e.  ZZ )
32ssriv 3461 . . . . . . 7  |-  Prime  C_  ZZ
41, 3ssexi 4538 . . . . . 6  |-  Prime  e.  _V
54mptex 6050 . . . . 5  |-  ( p  e.  Prime  |->  ( p 
pCnt  n ) )  e. 
_V
6 1arith.1 . . . . 5  |-  M  =  ( n  e.  NN  |->  ( p  e.  Prime  |->  ( p  pCnt  n ) ) )
75, 6fnmpti 5640 . . . 4  |-  M  Fn  NN
861arithlem3 14097 . . . . . . 7  |-  ( x  e.  NN  ->  ( M `  x ) : Prime --> NN0 )
9 nn0ex 10689 . . . . . . . 8  |-  NN0  e.  _V
109, 4elmap 7344 . . . . . . 7  |-  ( ( M `  x )  e.  ( NN0  ^m  Prime )  <->  ( M `  x ) : Prime --> NN0 )
118, 10sylibr 212 . . . . . 6  |-  ( x  e.  NN  ->  ( M `  x )  e.  ( NN0  ^m  Prime ) )
12 fzfi 11904 . . . . . . 7  |-  ( 1 ... x )  e. 
Fin
13 ffn 5660 . . . . . . . . . 10  |-  ( ( M `  x ) : Prime --> NN0  ->  ( M `  x )  Fn  Prime )
14 elpreima 5925 . . . . . . . . . 10  |-  ( ( M `  x )  Fn  Prime  ->  ( q  e.  ( `' ( M `  x )
" NN )  <->  ( q  e.  Prime  /\  ( ( M `  x ) `  q )  e.  NN ) ) )
158, 13, 143syl 20 . . . . . . . . 9  |-  ( x  e.  NN  ->  (
q  e.  ( `' ( M `  x
) " NN )  <-> 
( q  e.  Prime  /\  ( ( M `  x ) `  q
)  e.  NN ) ) )
1661arithlem2 14096 . . . . . . . . . . . 12  |-  ( ( x  e.  NN  /\  q  e.  Prime )  -> 
( ( M `  x ) `  q
)  =  ( q 
pCnt  x ) )
1716eleq1d 2520 . . . . . . . . . . 11  |-  ( ( x  e.  NN  /\  q  e.  Prime )  -> 
( ( ( M `
 x ) `  q )  e.  NN  <->  ( q  pCnt  x )  e.  NN ) )
18 id 22 . . . . . . . . . . . . 13  |-  ( x  e.  NN  ->  x  e.  NN )
19 dvdsle 13689 . . . . . . . . . . . . 13  |-  ( ( q  e.  ZZ  /\  x  e.  NN )  ->  ( q  ||  x  ->  q  <_  x )
)
202, 18, 19syl2anr 478 . . . . . . . . . . . 12  |-  ( ( x  e.  NN  /\  q  e.  Prime )  -> 
( q  ||  x  ->  q  <_  x )
)
21 pcelnn 14047 . . . . . . . . . . . . 13  |-  ( ( q  e.  Prime  /\  x  e.  NN )  ->  (
( q  pCnt  x
)  e.  NN  <->  q  ||  x ) )
2221ancoms 453 . . . . . . . . . . . 12  |-  ( ( x  e.  NN  /\  q  e.  Prime )  -> 
( ( q  pCnt  x )  e.  NN  <->  q  ||  x ) )
23 prmnn 13877 . . . . . . . . . . . . . 14  |-  ( q  e.  Prime  ->  q  e.  NN )
24 nnuz 11000 . . . . . . . . . . . . . 14  |-  NN  =  ( ZZ>= `  1 )
2523, 24syl6eleq 2549 . . . . . . . . . . . . 13  |-  ( q  e.  Prime  ->  q  e.  ( ZZ>= `  1 )
)
26 nnz 10772 . . . . . . . . . . . . 13  |-  ( x  e.  NN  ->  x  e.  ZZ )
27 elfz5 11555 . . . . . . . . . . . . 13  |-  ( ( q  e.  ( ZZ>= ` 
1 )  /\  x  e.  ZZ )  ->  (
q  e.  ( 1 ... x )  <->  q  <_  x ) )
2825, 26, 27syl2anr 478 . . . . . . . . . . . 12  |-  ( ( x  e.  NN  /\  q  e.  Prime )  -> 
( q  e.  ( 1 ... x )  <-> 
q  <_  x )
)
2920, 22, 283imtr4d 268 . . . . . . . . . . 11  |-  ( ( x  e.  NN  /\  q  e.  Prime )  -> 
( ( q  pCnt  x )  e.  NN  ->  q  e.  ( 1 ... x ) ) )
3017, 29sylbid 215 . . . . . . . . . 10  |-  ( ( x  e.  NN  /\  q  e.  Prime )  -> 
( ( ( M `
 x ) `  q )  e.  NN  ->  q  e.  ( 1 ... x ) ) )
3130expimpd 603 . . . . . . . . 9  |-  ( x  e.  NN  ->  (
( q  e.  Prime  /\  ( ( M `  x ) `  q
)  e.  NN )  ->  q  e.  ( 1 ... x ) ) )
3215, 31sylbid 215 . . . . . . . 8  |-  ( x  e.  NN  ->  (
q  e.  ( `' ( M `  x
) " NN )  ->  q  e.  ( 1 ... x ) ) )
3332ssrdv 3463 . . . . . . 7  |-  ( x  e.  NN  ->  ( `' ( M `  x ) " NN )  C_  ( 1 ... x ) )
34 ssfi 7637 . . . . . . 7  |-  ( ( ( 1 ... x
)  e.  Fin  /\  ( `' ( M `  x ) " NN )  C_  ( 1 ... x ) )  -> 
( `' ( M `
 x ) " NN )  e.  Fin )
3512, 33, 34sylancr 663 . . . . . 6  |-  ( x  e.  NN  ->  ( `' ( M `  x ) " NN )  e.  Fin )
36 cnveq 5114 . . . . . . . . 9  |-  ( e  =  ( M `  x )  ->  `' e  =  `' ( M `  x )
)
3736imaeq1d 5269 . . . . . . . 8  |-  ( e  =  ( M `  x )  ->  ( `' e " NN )  =  ( `' ( M `  x )
" NN ) )
3837eleq1d 2520 . . . . . . 7  |-  ( e  =  ( M `  x )  ->  (
( `' e " NN )  e.  Fin  <->  ( `' ( M `  x ) " NN )  e.  Fin )
)
39 1arith.2 . . . . . . 7  |-  R  =  { e  e.  ( NN0  ^m  Prime )  |  ( `' e
" NN )  e. 
Fin }
4038, 39elrab2 3219 . . . . . 6  |-  ( ( M `  x )  e.  R  <->  ( ( M `  x )  e.  ( NN0  ^m  Prime )  /\  ( `' ( M `  x )
" NN )  e. 
Fin ) )
4111, 35, 40sylanbrc 664 . . . . 5  |-  ( x  e.  NN  ->  ( M `  x )  e.  R )
4241rgen 2892 . . . 4  |-  A. x  e.  NN  ( M `  x )  e.  R
43 ffnfv 5971 . . . 4  |-  ( M : NN --> R  <->  ( M  Fn  NN  /\  A. x  e.  NN  ( M `  x )  e.  R
) )
447, 42, 43mpbir2an 911 . . 3  |-  M : NN
--> R
4516adantlr 714 . . . . . . . 8  |-  ( ( ( x  e.  NN  /\  y  e.  NN )  /\  q  e.  Prime )  ->  ( ( M `
 x ) `  q )  =  ( q  pCnt  x )
)
4661arithlem2 14096 . . . . . . . . 9  |-  ( ( y  e.  NN  /\  q  e.  Prime )  -> 
( ( M `  y ) `  q
)  =  ( q 
pCnt  y ) )
4746adantll 713 . . . . . . . 8  |-  ( ( ( x  e.  NN  /\  y  e.  NN )  /\  q  e.  Prime )  ->  ( ( M `
 y ) `  q )  =  ( q  pCnt  y )
)
4845, 47eqeq12d 2473 . . . . . . 7  |-  ( ( ( x  e.  NN  /\  y  e.  NN )  /\  q  e.  Prime )  ->  ( ( ( M `  x ) `
 q )  =  ( ( M `  y ) `  q
)  <->  ( q  pCnt  x )  =  ( q 
pCnt  y ) ) )
4948ralbidva 2839 . . . . . 6  |-  ( ( x  e.  NN  /\  y  e.  NN )  ->  ( A. q  e. 
Prime  ( ( M `  x ) `  q
)  =  ( ( M `  y ) `
 q )  <->  A. q  e.  Prime  ( q  pCnt  x )  =  ( q 
pCnt  y ) ) )
5061arithlem3 14097 . . . . . . 7  |-  ( y  e.  NN  ->  ( M `  y ) : Prime --> NN0 )
51 ffn 5660 . . . . . . . 8  |-  ( ( M `  y ) : Prime --> NN0  ->  ( M `  y )  Fn  Prime )
52 eqfnfv 5899 . . . . . . . 8  |-  ( ( ( M `  x
)  Fn  Prime  /\  ( M `  y )  Fn  Prime )  ->  (
( M `  x
)  =  ( M `
 y )  <->  A. q  e.  Prime  ( ( M `
 x ) `  q )  =  ( ( M `  y
) `  q )
) )
5313, 51, 52syl2an 477 . . . . . . 7  |-  ( ( ( M `  x
) : Prime --> NN0  /\  ( M `  y ) : Prime --> NN0 )  ->  ( ( M `  x )  =  ( M `  y )  <->  A. q  e.  Prime  ( ( M `  x
) `  q )  =  ( ( M `
 y ) `  q ) ) )
548, 50, 53syl2an 477 . . . . . 6  |-  ( ( x  e.  NN  /\  y  e.  NN )  ->  ( ( M `  x )  =  ( M `  y )  <->  A. q  e.  Prime  ( ( M `  x
) `  q )  =  ( ( M `
 y ) `  q ) ) )
55 nnnn0 10690 . . . . . . 7  |-  ( x  e.  NN  ->  x  e.  NN0 )
56 nnnn0 10690 . . . . . . 7  |-  ( y  e.  NN  ->  y  e.  NN0 )
57 pc11 14057 . . . . . . 7  |-  ( ( x  e.  NN0  /\  y  e.  NN0 )  -> 
( x  =  y  <->  A. q  e.  Prime  ( q  pCnt  x )  =  ( q  pCnt  y ) ) )
5855, 56, 57syl2an 477 . . . . . 6  |-  ( ( x  e.  NN  /\  y  e.  NN )  ->  ( x  =  y  <->  A. q  e.  Prime  ( q  pCnt  x )  =  ( q  pCnt  y ) ) )
5949, 54, 583bitr4d 285 . . . . 5  |-  ( ( x  e.  NN  /\  y  e.  NN )  ->  ( ( M `  x )  =  ( M `  y )  <-> 
x  =  y ) )
6059biimpd 207 . . . 4  |-  ( ( x  e.  NN  /\  y  e.  NN )  ->  ( ( M `  x )  =  ( M `  y )  ->  x  =  y ) )
6160rgen2a 2893 . . 3  |-  A. x  e.  NN  A. y  e.  NN  ( ( M `
 x )  =  ( M `  y
)  ->  x  =  y )
62 dff13 6073 . . 3  |-  ( M : NN -1-1-> R  <->  ( M : NN --> R  /\  A. x  e.  NN  A. y  e.  NN  ( ( M `
 x )  =  ( M `  y
)  ->  x  =  y ) ) )
6344, 61, 62mpbir2an 911 . 2  |-  M : NN
-1-1-> R
64 cnvimass 5290 . . . . . . 7  |-  ( `' f " NN ) 
C_  dom  f
65 cnveq 5114 . . . . . . . . . . . . . 14  |-  ( e  =  f  ->  `' e  =  `' f
)
6665imaeq1d 5269 . . . . . . . . . . . . 13  |-  ( e  =  f  ->  ( `' e " NN )  =  ( `' f " NN ) )
6766eleq1d 2520 . . . . . . . . . . . 12  |-  ( e  =  f  ->  (
( `' e " NN )  e.  Fin  <->  ( `' f " NN )  e.  Fin )
)
6867, 39elrab2 3219 . . . . . . . . . . 11  |-  ( f  e.  R  <->  ( f  e.  ( NN0  ^m  Prime )  /\  ( `' f
" NN )  e. 
Fin ) )
6968simplbi 460 . . . . . . . . . 10  |-  ( f  e.  R  ->  f  e.  ( NN0  ^m  Prime ) )
709, 4elmap 7344 . . . . . . . . . 10  |-  ( f  e.  ( NN0  ^m  Prime )  <->  f : Prime --> NN0 )
7169, 70sylib 196 . . . . . . . . 9  |-  ( f  e.  R  ->  f : Prime --> NN0 )
72 fdm 5664 . . . . . . . . 9  |-  ( f : Prime --> NN0  ->  dom  f  =  Prime )
7371, 72syl 16 . . . . . . . 8  |-  ( f  e.  R  ->  dom  f  =  Prime )
74 zssre 10757 . . . . . . . . 9  |-  ZZ  C_  RR
753, 74sstri 3466 . . . . . . . 8  |-  Prime  C_  RR
7673, 75syl6eqss 3507 . . . . . . 7  |-  ( f  e.  R  ->  dom  f  C_  RR )
7764, 76syl5ss 3468 . . . . . 6  |-  ( f  e.  R  ->  ( `' f " NN )  C_  RR )
7868simprbi 464 . . . . . 6  |-  ( f  e.  R  ->  ( `' f " NN )  e.  Fin )
79 fimaxre2 10382 . . . . . 6  |-  ( ( ( `' f " NN )  C_  RR  /\  ( `' f " NN )  e.  Fin )  ->  E. y  e.  RR  A. k  e.  ( `' f " NN ) k  <_  y )
8077, 78, 79syl2anc 661 . . . . 5  |-  ( f  e.  R  ->  E. y  e.  RR  A. k  e.  ( `' f " NN ) k  <_  y
)
81 eqid 2451 . . . . . . . 8  |-  ( g  e.  NN  |->  if ( g  e.  Prime ,  ( g ^ ( f `
 g ) ) ,  1 ) )  =  ( g  e.  NN  |->  if ( g  e.  Prime ,  ( g ^ ( f `  g ) ) ,  1 ) )
8271ad2antrr 725 . . . . . . . 8  |-  ( ( ( f  e.  R  /\  y  e.  RR )  /\  A. k  e.  ( `' f " NN ) k  <_  y
)  ->  f : Prime --> NN0 )
83 simplr 754 . . . . . . . . . . 11  |-  ( ( ( f  e.  R  /\  y  e.  RR )  /\  A. k  e.  ( `' f " NN ) k  <_  y
)  ->  y  e.  RR )
84 0re 9490 . . . . . . . . . . 11  |-  0  e.  RR
85 ifcl 3932 . . . . . . . . . . 11  |-  ( ( y  e.  RR  /\  0  e.  RR )  ->  if ( 0  <_ 
y ,  y ,  0 )  e.  RR )
8683, 84, 85sylancl 662 . . . . . . . . . 10  |-  ( ( ( f  e.  R  /\  y  e.  RR )  /\  A. k  e.  ( `' f " NN ) k  <_  y
)  ->  if (
0  <_  y , 
y ,  0 )  e.  RR )
87 max1 11261 . . . . . . . . . . 11  |-  ( ( 0  e.  RR  /\  y  e.  RR )  ->  0  <_  if (
0  <_  y , 
y ,  0 ) )
8884, 83, 87sylancr 663 . . . . . . . . . 10  |-  ( ( ( f  e.  R  /\  y  e.  RR )  /\  A. k  e.  ( `' f " NN ) k  <_  y
)  ->  0  <_  if ( 0  <_  y ,  y ,  0 ) )
89 flge0nn0 11776 . . . . . . . . . 10  |-  ( ( if ( 0  <_ 
y ,  y ,  0 )  e.  RR  /\  0  <_  if (
0  <_  y , 
y ,  0 ) )  ->  ( |_ `  if ( 0  <_ 
y ,  y ,  0 ) )  e. 
NN0 )
9086, 88, 89syl2anc 661 . . . . . . . . 9  |-  ( ( ( f  e.  R  /\  y  e.  RR )  /\  A. k  e.  ( `' f " NN ) k  <_  y
)  ->  ( |_ `  if ( 0  <_ 
y ,  y ,  0 ) )  e. 
NN0 )
91 nn0p1nn 10723 . . . . . . . . 9  |-  ( ( |_ `  if ( 0  <_  y , 
y ,  0 ) )  e.  NN0  ->  ( ( |_ `  if ( 0  <_  y ,  y ,  0 ) )  +  1 )  e.  NN )
9290, 91syl 16 . . . . . . . 8  |-  ( ( ( f  e.  R  /\  y  e.  RR )  /\  A. k  e.  ( `' f " NN ) k  <_  y
)  ->  ( ( |_ `  if ( 0  <_  y ,  y ,  0 ) )  +  1 )  e.  NN )
9383adantr 465 . . . . . . . . . . . 12  |-  ( ( ( ( f  e.  R  /\  y  e.  RR )  /\  A. k  e.  ( `' f " NN ) k  <_  y )  /\  ( q  e.  Prime  /\  ( ( |_ `  if ( 0  <_  y ,  y ,  0 ) )  +  1 )  <_  q )
)  ->  y  e.  RR )
9492adantr 465 . . . . . . . . . . . . 13  |-  ( ( ( ( f  e.  R  /\  y  e.  RR )  /\  A. k  e.  ( `' f " NN ) k  <_  y )  /\  ( q  e.  Prime  /\  ( ( |_ `  if ( 0  <_  y ,  y ,  0 ) )  +  1 )  <_  q )
)  ->  ( ( |_ `  if ( 0  <_  y ,  y ,  0 ) )  +  1 )  e.  NN )
9594nnred 10441 . . . . . . . . . . . 12  |-  ( ( ( ( f  e.  R  /\  y  e.  RR )  /\  A. k  e.  ( `' f " NN ) k  <_  y )  /\  ( q  e.  Prime  /\  ( ( |_ `  if ( 0  <_  y ,  y ,  0 ) )  +  1 )  <_  q )
)  ->  ( ( |_ `  if ( 0  <_  y ,  y ,  0 ) )  +  1 )  e.  RR )
96 simprl 755 . . . . . . . . . . . . 13  |-  ( ( ( ( f  e.  R  /\  y  e.  RR )  /\  A. k  e.  ( `' f " NN ) k  <_  y )  /\  ( q  e.  Prime  /\  ( ( |_ `  if ( 0  <_  y ,  y ,  0 ) )  +  1 )  <_  q )
)  ->  q  e.  Prime )
9775, 96sseldi 3455 . . . . . . . . . . . 12  |-  ( ( ( ( f  e.  R  /\  y  e.  RR )  /\  A. k  e.  ( `' f " NN ) k  <_  y )  /\  ( q  e.  Prime  /\  ( ( |_ `  if ( 0  <_  y ,  y ,  0 ) )  +  1 )  <_  q )
)  ->  q  e.  RR )
9886adantr 465 . . . . . . . . . . . . 13  |-  ( ( ( ( f  e.  R  /\  y  e.  RR )  /\  A. k  e.  ( `' f " NN ) k  <_  y )  /\  ( q  e.  Prime  /\  ( ( |_ `  if ( 0  <_  y ,  y ,  0 ) )  +  1 )  <_  q )
)  ->  if (
0  <_  y , 
y ,  0 )  e.  RR )
99 max2 11263 . . . . . . . . . . . . . 14  |-  ( ( 0  e.  RR  /\  y  e.  RR )  ->  y  <_  if (
0  <_  y , 
y ,  0 ) )
10084, 93, 99sylancr 663 . . . . . . . . . . . . 13  |-  ( ( ( ( f  e.  R  /\  y  e.  RR )  /\  A. k  e.  ( `' f " NN ) k  <_  y )  /\  ( q  e.  Prime  /\  ( ( |_ `  if ( 0  <_  y ,  y ,  0 ) )  +  1 )  <_  q )
)  ->  y  <_  if ( 0  <_  y ,  y ,  0 ) )
101 flltp1 11760 . . . . . . . . . . . . . 14  |-  ( if ( 0  <_  y ,  y ,  0 )  e.  RR  ->  if ( 0  <_  y ,  y ,  0 )  <  ( ( |_ `  if ( 0  <_  y , 
y ,  0 ) )  +  1 ) )
10298, 101syl 16 . . . . . . . . . . . . 13  |-  ( ( ( ( f  e.  R  /\  y  e.  RR )  /\  A. k  e.  ( `' f " NN ) k  <_  y )  /\  ( q  e.  Prime  /\  ( ( |_ `  if ( 0  <_  y ,  y ,  0 ) )  +  1 )  <_  q )
)  ->  if (
0  <_  y , 
y ,  0 )  <  ( ( |_
`  if ( 0  <_  y ,  y ,  0 ) )  +  1 ) )
10393, 98, 95, 100, 102lelttrd 9633 . . . . . . . . . . . 12  |-  ( ( ( ( f  e.  R  /\  y  e.  RR )  /\  A. k  e.  ( `' f " NN ) k  <_  y )  /\  ( q  e.  Prime  /\  ( ( |_ `  if ( 0  <_  y ,  y ,  0 ) )  +  1 )  <_  q )
)  ->  y  <  ( ( |_ `  if ( 0  <_  y ,  y ,  0 ) )  +  1 ) )
104 simprr 756 . . . . . . . . . . . 12  |-  ( ( ( ( f  e.  R  /\  y  e.  RR )  /\  A. k  e.  ( `' f " NN ) k  <_  y )  /\  ( q  e.  Prime  /\  ( ( |_ `  if ( 0  <_  y ,  y ,  0 ) )  +  1 )  <_  q )
)  ->  ( ( |_ `  if ( 0  <_  y ,  y ,  0 ) )  +  1 )  <_ 
q )
10593, 95, 97, 103, 104ltletrd 9635 . . . . . . . . . . 11  |-  ( ( ( ( f  e.  R  /\  y  e.  RR )  /\  A. k  e.  ( `' f " NN ) k  <_  y )  /\  ( q  e.  Prime  /\  ( ( |_ `  if ( 0  <_  y ,  y ,  0 ) )  +  1 )  <_  q )
)  ->  y  <  q )
10693, 97ltnled 9625 . . . . . . . . . . 11  |-  ( ( ( ( f  e.  R  /\  y  e.  RR )  /\  A. k  e.  ( `' f " NN ) k  <_  y )  /\  ( q  e.  Prime  /\  ( ( |_ `  if ( 0  <_  y ,  y ,  0 ) )  +  1 )  <_  q )
)  ->  ( y  <  q  <->  -.  q  <_  y ) )
107105, 106mpbid 210 . . . . . . . . . 10  |-  ( ( ( ( f  e.  R  /\  y  e.  RR )  /\  A. k  e.  ( `' f " NN ) k  <_  y )  /\  ( q  e.  Prime  /\  ( ( |_ `  if ( 0  <_  y ,  y ,  0 ) )  +  1 )  <_  q )
)  ->  -.  q  <_  y )
10896biantrurd 508 . . . . . . . . . . . 12  |-  ( ( ( ( f  e.  R  /\  y  e.  RR )  /\  A. k  e.  ( `' f " NN ) k  <_  y )  /\  ( q  e.  Prime  /\  ( ( |_ `  if ( 0  <_  y ,  y ,  0 ) )  +  1 )  <_  q )
)  ->  ( (
f `  q )  e.  NN  <->  ( q  e. 
Prime  /\  ( f `  q )  e.  NN ) ) )
10982adantr 465 . . . . . . . . . . . . 13  |-  ( ( ( ( f  e.  R  /\  y  e.  RR )  /\  A. k  e.  ( `' f " NN ) k  <_  y )  /\  ( q  e.  Prime  /\  ( ( |_ `  if ( 0  <_  y ,  y ,  0 ) )  +  1 )  <_  q )
)  ->  f : Prime --> NN0 )
110 ffn 5660 . . . . . . . . . . . . 13  |-  ( f : Prime --> NN0  ->  f  Fn  Prime )
111 elpreima 5925 . . . . . . . . . . . . 13  |-  ( f  Fn  Prime  ->  ( q  e.  ( `' f
" NN )  <->  ( q  e.  Prime  /\  ( f `  q )  e.  NN ) ) )
112109, 110, 1113syl 20 . . . . . . . . . . . 12  |-  ( ( ( ( f  e.  R  /\  y  e.  RR )  /\  A. k  e.  ( `' f " NN ) k  <_  y )  /\  ( q  e.  Prime  /\  ( ( |_ `  if ( 0  <_  y ,  y ,  0 ) )  +  1 )  <_  q )
)  ->  ( q  e.  ( `' f " NN )  <->  ( q  e. 
Prime  /\  ( f `  q )  e.  NN ) ) )
113108, 112bitr4d 256 . . . . . . . . . . 11  |-  ( ( ( ( f  e.  R  /\  y  e.  RR )  /\  A. k  e.  ( `' f " NN ) k  <_  y )  /\  ( q  e.  Prime  /\  ( ( |_ `  if ( 0  <_  y ,  y ,  0 ) )  +  1 )  <_  q )
)  ->  ( (
f `  q )  e.  NN  <->  q  e.  ( `' f " NN ) ) )
114 simplr 754 . . . . . . . . . . . 12  |-  ( ( ( ( f  e.  R  /\  y  e.  RR )  /\  A. k  e.  ( `' f " NN ) k  <_  y )  /\  ( q  e.  Prime  /\  ( ( |_ `  if ( 0  <_  y ,  y ,  0 ) )  +  1 )  <_  q )
)  ->  A. k  e.  ( `' f " NN ) k  <_  y
)
115 breq1 4396 . . . . . . . . . . . . 13  |-  ( k  =  q  ->  (
k  <_  y  <->  q  <_  y ) )
116115rspccv 3169 . . . . . . . . . . . 12  |-  ( A. k  e.  ( `' f " NN ) k  <_  y  ->  (
q  e.  ( `' f " NN )  ->  q  <_  y
) )
117114, 116syl 16 . . . . . . . . . . 11  |-  ( ( ( ( f  e.  R  /\  y  e.  RR )  /\  A. k  e.  ( `' f " NN ) k  <_  y )  /\  ( q  e.  Prime  /\  ( ( |_ `  if ( 0  <_  y ,  y ,  0 ) )  +  1 )  <_  q )
)  ->  ( q  e.  ( `' f " NN )  ->  q  <_ 
y ) )
118113, 117sylbid 215 . . . . . . . . . 10  |-  ( ( ( ( f  e.  R  /\  y  e.  RR )  /\  A. k  e.  ( `' f " NN ) k  <_  y )  /\  ( q  e.  Prime  /\  ( ( |_ `  if ( 0  <_  y ,  y ,  0 ) )  +  1 )  <_  q )
)  ->  ( (
f `  q )  e.  NN  ->  q  <_  y ) )
119107, 118mtod 177 . . . . . . . . 9  |-  ( ( ( ( f  e.  R  /\  y  e.  RR )  /\  A. k  e.  ( `' f " NN ) k  <_  y )  /\  ( q  e.  Prime  /\  ( ( |_ `  if ( 0  <_  y ,  y ,  0 ) )  +  1 )  <_  q )
)  ->  -.  (
f `  q )  e.  NN )
120109, 96ffvelrnd 5946 . . . . . . . . . . 11  |-  ( ( ( ( f  e.  R  /\  y  e.  RR )  /\  A. k  e.  ( `' f " NN ) k  <_  y )  /\  ( q  e.  Prime  /\  ( ( |_ `  if ( 0  <_  y ,  y ,  0 ) )  +  1 )  <_  q )
)  ->  ( f `  q )  e.  NN0 )
121 elnn0 10685 . . . . . . . . . . 11  |-  ( ( f `  q )  e.  NN0  <->  ( ( f `
 q )  e.  NN  \/  ( f `
 q )  =  0 ) )
122120, 121sylib 196 . . . . . . . . . 10  |-  ( ( ( ( f  e.  R  /\  y  e.  RR )  /\  A. k  e.  ( `' f " NN ) k  <_  y )  /\  ( q  e.  Prime  /\  ( ( |_ `  if ( 0  <_  y ,  y ,  0 ) )  +  1 )  <_  q )
)  ->  ( (
f `  q )  e.  NN  \/  ( f `
 q )  =  0 ) )
123122ord 377 . . . . . . . . 9  |-  ( ( ( ( f  e.  R  /\  y  e.  RR )  /\  A. k  e.  ( `' f " NN ) k  <_  y )  /\  ( q  e.  Prime  /\  ( ( |_ `  if ( 0  <_  y ,  y ,  0 ) )  +  1 )  <_  q )
)  ->  ( -.  ( f `  q
)  e.  NN  ->  ( f `  q )  =  0 ) )
124119, 123mpd 15 . . . . . . . 8  |-  ( ( ( ( f  e.  R  /\  y  e.  RR )  /\  A. k  e.  ( `' f " NN ) k  <_  y )  /\  ( q  e.  Prime  /\  ( ( |_ `  if ( 0  <_  y ,  y ,  0 ) )  +  1 )  <_  q )
)  ->  ( f `  q )  =  0 )
1256, 81, 82, 92, 1241arithlem4 14098 . . . . . . 7  |-  ( ( ( f  e.  R  /\  y  e.  RR )  /\  A. k  e.  ( `' f " NN ) k  <_  y
)  ->  E. x  e.  NN  f  =  ( M `  x ) )
126125ex 434 . . . . . 6  |-  ( ( f  e.  R  /\  y  e.  RR )  ->  ( A. k  e.  ( `' f " NN ) k  <_  y  ->  E. x  e.  NN  f  =  ( M `  x ) ) )
127126rexlimdva 2940 . . . . 5  |-  ( f  e.  R  ->  ( E. y  e.  RR  A. k  e.  ( `' f " NN ) k  <_  y  ->  E. x  e.  NN  f  =  ( M `  x ) ) )
12880, 127mpd 15 . . . 4  |-  ( f  e.  R  ->  E. x  e.  NN  f  =  ( M `  x ) )
129128rgen 2892 . . 3  |-  A. f  e.  R  E. x  e.  NN  f  =  ( M `  x )
130 dffo3 5960 . . 3  |-  ( M : NN -onto-> R  <->  ( M : NN --> R  /\  A. f  e.  R  E. x  e.  NN  f  =  ( M `  x ) ) )
13144, 129, 130mpbir2an 911 . 2  |-  M : NN -onto-> R
132 df-f1o 5526 . 2  |-  ( M : NN -1-1-onto-> R  <->  ( M : NN
-1-1-> R  /\  M : NN -onto-> R ) )
13363, 131, 132mpbir2an 911 1  |-  M : NN
-1-1-onto-> R
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    = wceq 1370    e. wcel 1758   A.wral 2795   E.wrex 2796   {crab 2799    C_ wss 3429   ifcif 3892   class class class wbr 4393    |-> cmpt 4451   `'ccnv 4940   dom cdm 4941   "cima 4944    Fn wfn 5514   -->wf 5515   -1-1->wf1 5516   -onto->wfo 5517   -1-1-onto->wf1o 5518   ` cfv 5519  (class class class)co 6193    ^m cmap 7317   Fincfn 7413   RRcr 9385   0cc0 9386   1c1 9387    + caddc 9389    < clt 9522    <_ cle 9523   NNcn 10426   NN0cn0 10683   ZZcz 10750   ZZ>=cuz 10965   ...cfz 11547   |_cfl 11750   ^cexp 11975    || cdivides 13646   Primecprime 13874    pCnt cpc 14014
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-rep 4504  ax-sep 4514  ax-nul 4522  ax-pow 4571  ax-pr 4632  ax-un 6475  ax-cnex 9442  ax-resscn 9443  ax-1cn 9444  ax-icn 9445  ax-addcl 9446  ax-addrcl 9447  ax-mulcl 9448  ax-mulrcl 9449  ax-mulcom 9450  ax-addass 9451  ax-mulass 9452  ax-distr 9453  ax-i2m1 9454  ax-1ne0 9455  ax-1rid 9456  ax-rnegex 9457  ax-rrecex 9458  ax-cnre 9459  ax-pre-lttri 9460  ax-pre-lttrn 9461  ax-pre-ltadd 9462  ax-pre-mulgt0 9463  ax-pre-sup 9464
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-fal 1376  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-nel 2647  df-ral 2800  df-rex 2801  df-reu 2802  df-rmo 2803  df-rab 2804  df-v 3073  df-sbc 3288  df-csb 3390  df-dif 3432  df-un 3434  df-in 3436  df-ss 3443  df-pss 3445  df-nul 3739  df-if 3893  df-pw 3963  df-sn 3979  df-pr 3981  df-tp 3983  df-op 3985  df-uni 4193  df-int 4230  df-iun 4274  df-br 4394  df-opab 4452  df-mpt 4453  df-tr 4487  df-eprel 4733  df-id 4737  df-po 4742  df-so 4743  df-fr 4780  df-we 4782  df-ord 4823  df-on 4824  df-lim 4825  df-suc 4826  df-xp 4947  df-rel 4948  df-cnv 4949  df-co 4950  df-dm 4951  df-rn 4952  df-res 4953  df-ima 4954  df-iota 5482  df-fun 5521  df-fn 5522  df-f 5523  df-f1 5524  df-fo 5525  df-f1o 5526  df-fv 5527  df-riota 6154  df-ov 6196  df-oprab 6197  df-mpt2 6198  df-om 6580  df-1st 6680  df-2nd 6681  df-recs 6935  df-rdg 6969  df-1o 7023  df-2o 7024  df-oadd 7027  df-er 7204  df-map 7319  df-en 7414  df-dom 7415  df-sdom 7416  df-fin 7417  df-sup 7795  df-pnf 9524  df-mnf 9525  df-xr 9526  df-ltxr 9527  df-le 9528  df-sub 9701  df-neg 9702  df-div 10098  df-nn 10427  df-2 10484  df-3 10485  df-n0 10684  df-z 10751  df-uz 10966  df-q 11058  df-rp 11096  df-fz 11548  df-fl 11752  df-mod 11819  df-seq 11917  df-exp 11976  df-cj 12699  df-re 12700  df-im 12701  df-sqr 12835  df-abs 12836  df-dvds 13647  df-gcd 13802  df-prm 13875  df-pc 14015
This theorem is referenced by:  1arith2  14100  sqff1o  22646
  Copyright terms: Public domain W3C validator