MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  19.37v Structured version   Unicode version

Theorem 19.37v 1943
Description: Special case of Theorem 19.37 of [Margaris] p. 90. (Contributed by NM, 21-Jun-1993.)
Assertion
Ref Expression
19.37v  |-  ( E. x ( ph  ->  ps )  <->  ( ph  ->  E. x ps ) )
Distinct variable group:    ph, x
Allowed substitution hint:    ps( x)

Proof of Theorem 19.37v
StepHypRef Expression
1 nfv 1683 . 2  |-  F/ x ph
2119.37 1915 1  |-  ( E. x ( ph  ->  ps )  <->  ( ph  ->  E. x ps ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184   E.wex 1596
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-12 1803
This theorem depends on definitions:  df-bi 185  df-ex 1597  df-nf 1600
This theorem is referenced by:  19.37aiv  1944  moanimOLD  2355  axrep5  4563  kmlem14  8543  kmlem15  8544  eqvincg  27078  19.37vv  30896  pm11.61  30905  rmoanim  31679  relopabVD  32799  bnj132  32877  bnj1098  32939  bnj150  33031  bnj865  33078  bnj996  33110  bnj1021  33119  bnj1090  33132  bnj1176  33158  bj-axrep5  33477
  Copyright terms: Public domain W3C validator