MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  19.37aiv Structured version   Unicode version

Theorem 19.37aiv 1928
Description: Inference from Theorem 19.37 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.)
Hypothesis
Ref Expression
19.37aiv.1  |-  E. x
( ph  ->  ps )
Assertion
Ref Expression
19.37aiv  |-  ( ph  ->  E. x ps )
Distinct variable group:    ph, x
Allowed substitution hint:    ps( x)

Proof of Theorem 19.37aiv
StepHypRef Expression
1 19.37aiv.1 . 2  |-  E. x
( ph  ->  ps )
2 19.37v 1927 . 2  |-  ( E. x ( ph  ->  ps )  <->  ( ph  ->  E. x ps ) )
31, 2mpbi 208 1  |-  ( ph  ->  E. x ps )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4   E.wex 1587
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-12 1794
This theorem depends on definitions:  df-bi 185  df-ex 1588  df-nf 1591
This theorem is referenced by:  eqvinc  3186  bnd  8203  zfcndinf  8889  relopabVD  31940  bnj1093  32274  bnj1186  32301
  Copyright terms: Public domain W3C validator