MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  19.35ri Structured version   Unicode version

Theorem 19.35ri 1677
Description: Inference associated with 19.35 1674. (Contributed by NM, 12-Mar-1993.)
Hypothesis
Ref Expression
19.35ri.1  |-  ( A. x ph  ->  E. x ps )
Assertion
Ref Expression
19.35ri  |-  E. x
( ph  ->  ps )

Proof of Theorem 19.35ri
StepHypRef Expression
1 19.35ri.1 . 2  |-  ( A. x ph  ->  E. x ps )
2 19.35 1674 . 2  |-  ( E. x ( ph  ->  ps )  <->  ( A. x ph  ->  E. x ps )
)
31, 2mpbir 209 1  |-  E. x
( ph  ->  ps )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4   A.wal 1381   E.wex 1599
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618
This theorem depends on definitions:  df-bi 185  df-ex 1600
This theorem is referenced by:  qexmid  1963  axrep1  4549  axextnd  8969  axinfnd  8987  bj-axrep1  34122
  Copyright terms: Public domain W3C validator