MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  19.35i Structured version   Unicode version

Theorem 19.35i 1666
Description: Inference from Theorem 19.35 of [Margaris] p. 90. (Contributed by NM, 21-Jun-1993.)
Hypothesis
Ref Expression
19.35i.1  |-  E. x
( ph  ->  ps )
Assertion
Ref Expression
19.35i  |-  ( A. x ph  ->  E. x ps )

Proof of Theorem 19.35i
StepHypRef Expression
1 19.35i.1 . 2  |-  E. x
( ph  ->  ps )
2 19.35 1664 . 2  |-  ( E. x ( ph  ->  ps )  <->  ( A. x ph  ->  E. x ps )
)
31, 2mpbi 208 1  |-  ( A. x ph  ->  E. x ps )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4   A.wal 1377   E.wex 1596
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612
This theorem depends on definitions:  df-bi 185  df-ex 1597
This theorem is referenced by:  19.2  1723  spimeh  1731  cbv3hv  1903  ax6e  1971  spimed  1976  equvini  2060  equveli  2061  equveliOLD  2062  2ax6elem  2179  euex  2303  axrep4  4562  zfcndrep  8992  wl-exeq  29592  bj-spimedv  33380  bj-axrep4  33476
  Copyright terms: Public domain W3C validator