MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  19.35i Structured version   Unicode version

Theorem 19.35i 1676
Description: Inference associated with 19.35 1674. (Contributed by NM, 21-Jun-1993.)
Hypothesis
Ref Expression
19.35i.1  |-  E. x
( ph  ->  ps )
Assertion
Ref Expression
19.35i  |-  ( A. x ph  ->  E. x ps )

Proof of Theorem 19.35i
StepHypRef Expression
1 19.35i.1 . 2  |-  E. x
( ph  ->  ps )
2 19.35 1674 . 2  |-  ( E. x ( ph  ->  ps )  <->  ( A. x ph  ->  E. x ps )
)
31, 2mpbi 208 1  |-  ( A. x ph  ->  E. x ps )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4   A.wal 1381   E.wex 1599
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618
This theorem depends on definitions:  df-bi 185  df-ex 1600
This theorem is referenced by:  19.2  1738  spimeh  1768  cbv3hv  1942  ax6e  1988  spimed  1993  equvini  2073  equveli  2074  equveliOLD  2075  euex  2294  axrep4  4552  zfcndrep  8995  wl-exeq  29963  bj-spimedv  34163  bj-axrep4  34260
  Copyright terms: Public domain W3C validator