MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  19.34 Structured version   Unicode version

Theorem 19.34 1807
Description: Theorem 19.34 of [Margaris] p. 90. (Contributed by NM, 12-Mar-1993.)
Assertion
Ref Expression
19.34  |-  ( ( A. x ph  \/  E. x ps )  ->  E. x ( ph  \/  ps ) )

Proof of Theorem 19.34
StepHypRef Expression
1 19.2 1799 . . 3  |-  ( A. x ph  ->  E. x ph )
21orim1i 520 . 2  |-  ( ( A. x ph  \/  E. x ps )  -> 
( E. x ph  \/  E. x ps )
)
3 19.43 1738 . 2  |-  ( E. x ( ph  \/  ps )  <->  ( E. x ph  \/  E. x ps ) )
42, 3sylibr 216 1  |-  ( ( A. x ph  \/  E. x ps )  ->  E. x ( ph  \/  ps ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 370   A.wal 1436   E.wex 1660
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1666  ax-4 1679  ax-6 1795
This theorem depends on definitions:  df-bi 189  df-or 372  df-ex 1661
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator