MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  19.28v Structured version   Unicode version

Theorem 19.28v 1914
Description: Theorem 19.28 of [Margaris] p. 90. (Contributed by NM, 25-Mar-2004.)
Assertion
Ref Expression
19.28v  |-  ( A. x ( ph  /\  ps )  <->  ( ph  /\  A. x ps ) )
Distinct variable group:    ph, x
Allowed substitution hint:    ps( x)

Proof of Theorem 19.28v
StepHypRef Expression
1 nfv 1673 . 2  |-  F/ x ph
2119.28 1857 1  |-  ( A. x ( ph  /\  ps )  <->  ( ph  /\  A. x ps ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184    /\ wa 369   A.wal 1367
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-12 1792
This theorem depends on definitions:  df-bi 185  df-an 371  df-ex 1587  df-nf 1590
This theorem is referenced by:  reu6  3163  dfer2  7117  kmlem14  8347  kmlem15  8348  19.28vv  29657  bnj1176  32015  bnj1186  32017
  Copyright terms: Public domain W3C validator