MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  19.26-2 Structured version   Unicode version

Theorem 19.26-2 1686
Description: Theorem 19.26 1685 with two quantifiers. (Contributed by NM, 3-Feb-2005.)
Assertion
Ref Expression
19.26-2  |-  ( A. x A. y ( ph  /\ 
ps )  <->  ( A. x A. y ph  /\  A. x A. y ps ) )

Proof of Theorem 19.26-2
StepHypRef Expression
1 19.26 1685 . . 3  |-  ( A. y ( ph  /\  ps )  <->  ( A. y ph  /\  A. y ps ) )
21albii 1645 . 2  |-  ( A. x A. y ( ph  /\ 
ps )  <->  A. x
( A. y ph  /\ 
A. y ps )
)
3 19.26 1685 . 2  |-  ( A. x ( A. y ph  /\  A. y ps )  <->  ( A. x A. y ph  /\  A. x A. y ps )
)
42, 3bitri 249 1  |-  ( A. x A. y ( ph  /\ 
ps )  <->  ( A. x A. y ph  /\  A. x A. y ps ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184    /\ wa 367   A.wal 1396
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636
This theorem depends on definitions:  df-bi 185  df-an 369
This theorem is referenced by:  2mo2  2369  opelopabt  4748  fun11  5635  dford4  31210
  Copyright terms: Public domain W3C validator