MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  19.23bi Structured version   Unicode version

Theorem 19.23bi 1805
Description: Inference from Theorem 19.23 of [Margaris] p. 90. (Contributed by NM, 12-Mar-1993.)
Hypothesis
Ref Expression
19.23bi.1  |-  ( E. x ph  ->  ps )
Assertion
Ref Expression
19.23bi  |-  ( ph  ->  ps )

Proof of Theorem 19.23bi
StepHypRef Expression
1 19.8a 1793 . 2  |-  ( ph  ->  E. x ph )
2 19.23bi.1 . 2  |-  ( E. x ph  ->  ps )
31, 2syl 16 1  |-  ( ph  ->  ps )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4   E.wex 1586
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-12 1792
This theorem depends on definitions:  df-bi 185  df-ex 1587
This theorem is referenced by:  equs5e  1907  mo2v  2260  2mo  2360  2moOLD  2361  2moOLDOLD  2362  copsexg  4576  copsexgOLD  4577  axreg2  7808  ustuqtop4  19819  hash1to3  30235
  Copyright terms: Public domain W3C validator