MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  19.23bi Structured version   Unicode version

Theorem 19.23bi 1895
Description: Inference form of Theorem 19.23 of [Margaris] p. 90, see 19.23 1938. (Contributed by NM, 12-Mar-1993.)
Hypothesis
Ref Expression
19.23bi.1  |-  ( E. x ph  ->  ps )
Assertion
Ref Expression
19.23bi  |-  ( ph  ->  ps )

Proof of Theorem 19.23bi
StepHypRef Expression
1 19.8a 1881 . 2  |-  ( ph  ->  E. x ph )
2 19.23bi.1 . 2  |-  ( E. x ph  ->  ps )
31, 2syl 17 1  |-  ( ph  ->  ps )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4   E.wex 1633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-12 1878
This theorem depends on definitions:  df-bi 185  df-ex 1634
This theorem is referenced by:  equs5e  2007  mo2v  2245  2mo  2324  2moOLD  2325  copsexg  4675  axreg2  8052  hash1to3  12577  ustuqtop4  21037  f1omptsnlem  31239  mptsnunlem  31241
  Copyright terms: Public domain W3C validator