Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  19.21t Unicode version

Theorem 19.21t 1770
 Description: Closed form of Theorem 19.21 of [Margaris] p. 90. (Contributed by NM, 27-May-1997.) (Revised by Mario Carneiro, 24-Sep-2016.)
Assertion
Ref Expression
19.21t

Proof of Theorem 19.21t
StepHypRef Expression
1 id 21 . . . 4
21nfrd 1704 . . 3
3 alim 1548 . . 3
42, 3syl9 68 . 2
5 nfa1 1719 . . . . . 6
65a1i 12 . . . . 5
71, 6nfimd 1727 . . . 4
87nfrd 1704 . . 3
9 ax-4 1692 . . . . 5
109imim2i 15 . . . 4
1110alimi 1546 . . 3
128, 11syl6 31 . 2
134, 12impbid 185 1
 Colors of variables: wff set class Syntax hints:   wi 6   wb 178  wal 1532  wnf 1539 This theorem is referenced by:  19.21  1771  sbcom  1983  sbal2  2100  ax11indalem  2110  ax11inda2ALT  2111  r19.21t  2590  ceqsalt  2748  sbciegft  2951 This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-gen 1536  ax-4 1692 This theorem depends on definitions:  df-bi 179  df-an 362  df-nf 1540
 Copyright terms: Public domain W3C validator