Mathbox for Alan Sare < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  19.21a3con13vVD Structured version   Visualization version   Unicode version

Theorem 19.21a3con13vVD 37258
Description: Virtual deduction proof of alrim3con13v 36905. The following user's proof is completed by invoking mmj2's unify command and using mmj2's StepSelector to pick all remaining steps of the Metamath proof.
 1:: 2:: 3:2,?: e2 37021 4:2,?: e2 37021 5:2,?: e2 37021 6:1,4,?: e12 37121 7:3,?: e2 37021 8:5,?: e2 37021 9:7,6,8,?: e222 37026 10:9,?: e2 37021 11:10:in2 qed:11:in1
(Contributed by Alan Sare, 31-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
19.21a3con13vVD
Distinct variable groups:   ,   ,
Allowed substitution hint:   ()

Proof of Theorem 19.21a3con13vVD
StepHypRef Expression
1 idn2 37003 . . . . . . 7
2 simp1 1009 . . . . . . 7
31, 2e2 37021 . . . . . 6
4 ax-5 1760 . . . . . 6
53, 4e2 37021 . . . . 5
6 idn1 36955 . . . . . 6
7 simp2 1010 . . . . . . 7
81, 7e2 37021 . . . . . 6
9 id 22 . . . . . 6
106, 8, 9e12 37121 . . . . 5
11 simp3 1011 . . . . . . 7
121, 11e2 37021 . . . . . 6
13 ax-5 1760 . . . . . 6
1412, 13e2 37021 . . . . 5
15 pm3.2an3 1188 . . . . 5
165, 10, 14, 15e222 37026 . . . 4
17 19.26-3an 1736 . . . . 5
1817biimpri 210 . . . 4
1916, 18e2 37021 . . 3
2019in2 36995 . 2
2120in1 36952 1
 Colors of variables: wff setvar class Syntax hints:   wi 4   w3a 986  wal 1444 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1671  ax-4 1684  ax-5 1760 This theorem depends on definitions:  df-bi 189  df-an 373  df-3an 988  df-vd1 36951  df-vd2 36959 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator