MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  19.21 Structured version   Unicode version

Theorem 19.21 1844
Description: Theorem 19.21 of [Margaris] p. 90. The hypothesis can be thought of as " x is not free in  ph." (Contributed by NM, 14-May-1993.) (Revised by Mario Carneiro, 24-Sep-2016.)
Hypothesis
Ref Expression
19.21.1  |-  F/ x ph
Assertion
Ref Expression
19.21  |-  ( A. x ( ph  ->  ps )  <->  ( ph  ->  A. x ps ) )

Proof of Theorem 19.21
StepHypRef Expression
1 19.21.1 . 2  |-  F/ x ph
2 19.21t 1843 . 2  |-  ( F/ x ph  ->  ( A. x ( ph  ->  ps )  <->  ( ph  ->  A. x ps ) ) )
31, 2ax-mp 5 1  |-  ( A. x ( ph  ->  ps )  <->  ( ph  ->  A. x ps ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184   A.wal 1368   F/wnf 1590
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-10 1777  ax-12 1794
This theorem depends on definitions:  df-bi 185  df-ex 1588  df-nf 1591
This theorem is referenced by:  19.21h  1845  stdpc5  1846  19.21-2  1898  nf3  1901  19.32  1907  19.21v  1921  19.12vv  1929  cbv1  1973  axc14  2073  eu2OLD  2316  moanimOLD  2342  r2alf  2875  19.12b  27760  wl-dral1d  28509  mpt2bi123f  29124  bj-biexal2  32529  bj-bialal  32531  bj-cbv1v  32561
  Copyright terms: Public domain W3C validator