MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1259lem1 Structured version   Unicode version

Theorem 1259lem1 14615
Description: Lemma for 1259prm 14620. Calculate a power mod. In decimal, we calculate  2 ^ 1 6  =  5 2 N  +  6 8  ==  6 8 and  2 ^ 1 7  ==  6 8  x.  2  =  1 3 6 in this lemma. (Contributed by Mario Carneiro, 22-Feb-2014.) (Revised by Mario Carneiro, 20-Apr-2015.)
Hypothesis
Ref Expression
1259prm.1  |-  N  = ;;; 1 2 5 9
Assertion
Ref Expression
1259lem1  |-  ( ( 2 ^; 1 7 )  mod 
N )  =  (;; 1 3 6  mod 
N )

Proof of Theorem 1259lem1
StepHypRef Expression
1 1259prm.1 . . 3  |-  N  = ;;; 1 2 5 9
2 1nn0 10728 . . . . . 6  |-  1  e.  NN0
3 2nn0 10729 . . . . . 6  |-  2  e.  NN0
42, 3deccl 10909 . . . . 5  |- ; 1 2  e.  NN0
5 5nn0 10732 . . . . 5  |-  5  e.  NN0
64, 5deccl 10909 . . . 4  |- ;; 1 2 5  e.  NN0
7 9nn 10617 . . . 4  |-  9  e.  NN
86, 7decnncl 10908 . . 3  |- ;;; 1 2 5 9  e.  NN
91, 8eqeltri 2466 . 2  |-  N  e.  NN
10 2nn 10610 . 2  |-  2  e.  NN
11 6nn0 10733 . . 3  |-  6  e.  NN0
122, 11deccl 10909 . 2  |- ; 1 6  e.  NN0
13 0z 10792 . 2  |-  0  e.  ZZ
14 8nn0 10735 . . 3  |-  8  e.  NN0
1511, 14deccl 10909 . 2  |- ; 6 8  e.  NN0
16 3nn0 10730 . . . 4  |-  3  e.  NN0
172, 16deccl 10909 . . 3  |- ; 1 3  e.  NN0
1817, 11deccl 10909 . 2  |- ;; 1 3 6  e.  NN0
195, 3deccl 10909 . . . 4  |- ; 5 2  e.  NN0
2019nn0zi 10806 . . 3  |- ; 5 2  e.  ZZ
213, 14nn0expcli 12095 . . 3  |-  ( 2 ^ 8 )  e. 
NN0
22 eqid 2382 . . 3  |-  ( ( 2 ^ 8 )  mod  N )  =  ( ( 2 ^ 8 )  mod  N
)
2314nn0cni 10724 . . . 4  |-  8  e.  CC
24 2cn 10523 . . . 4  |-  2  e.  CC
25 8t2e16 10983 . . . 4  |-  ( 8  x.  2 )  = ; 1
6
2623, 24, 25mulcomli 9514 . . 3  |-  ( 2  x.  8 )  = ; 1
6
27 9nn0 10736 . . . . 5  |-  9  e.  NN0
28 eqid 2382 . . . . 5  |- ; 6 8  = ; 6 8
29 4nn0 10731 . . . . . 6  |-  4  e.  NN0
30 7nn0 10734 . . . . . 6  |-  7  e.  NN0
3129, 30deccl 10909 . . . . 5  |- ; 4 7  e.  NN0
32 eqid 2382 . . . . . 6  |- ;; 1 2 5  = ;; 1 2 5
33 0nn0 10727 . . . . . . 7  |-  0  e.  NN0
3411dec0h 10911 . . . . . . 7  |-  6  = ; 0 6
35 eqid 2382 . . . . . . 7  |- ; 4 7  = ; 4 7
36 4cn 10530 . . . . . . . . . 10  |-  4  e.  CC
3736addid2i 9679 . . . . . . . . 9  |-  ( 0  +  4 )  =  4
3837oveq1i 6206 . . . . . . . 8  |-  ( ( 0  +  4 )  +  1 )  =  ( 4  +  1 )
39 4p1e5 10579 . . . . . . . 8  |-  ( 4  +  1 )  =  5
4038, 39eqtri 2411 . . . . . . 7  |-  ( ( 0  +  4 )  +  1 )  =  5
41 7cn 10536 . . . . . . . 8  |-  7  e.  CC
42 6cn 10534 . . . . . . . 8  |-  6  e.  CC
43 7p6e13 10949 . . . . . . . 8  |-  ( 7  +  6 )  = ; 1
3
4441, 42, 43addcomli 9683 . . . . . . 7  |-  ( 6  +  7 )  = ; 1
3
4533, 11, 29, 30, 34, 35, 40, 16, 44decaddc 10937 . . . . . 6  |-  ( 6  + ; 4 7 )  = ; 5
3
463, 11deccl 10909 . . . . . 6  |- ; 2 6  e.  NN0
47 eqid 2382 . . . . . . 7  |- ; 1 2  = ; 1 2
485dec0h 10911 . . . . . . . 8  |-  5  = ; 0 5
49 eqid 2382 . . . . . . . 8  |- ; 2 6  = ; 2 6
5024addid2i 9679 . . . . . . . . . 10  |-  ( 0  +  2 )  =  2
5150oveq1i 6206 . . . . . . . . 9  |-  ( ( 0  +  2 )  +  1 )  =  ( 2  +  1 )
52 2p1e3 10576 . . . . . . . . 9  |-  ( 2  +  1 )  =  3
5351, 52eqtri 2411 . . . . . . . 8  |-  ( ( 0  +  2 )  +  1 )  =  3
54 5cn 10532 . . . . . . . . 9  |-  5  e.  CC
55 6p5e11 10945 . . . . . . . . 9  |-  ( 6  +  5 )  = ; 1
1
5642, 54, 55addcomli 9683 . . . . . . . 8  |-  ( 5  +  6 )  = ; 1
1
5733, 5, 3, 11, 48, 49, 53, 2, 56decaddc 10937 . . . . . . 7  |-  ( 5  + ; 2 6 )  = ; 3
1
58 10nn0 10737 . . . . . . 7  |-  10  e.  NN0
59 eqid 2382 . . . . . . . 8  |- ; 5 2  = ; 5 2
6016dec0h 10911 . . . . . . . . 9  |-  3  = ; 0 3
61 dec10 10925 . . . . . . . . 9  |-  10  = ; 1 0
62 ax-1cn 9461 . . . . . . . . . 10  |-  1  e.  CC
6362addid2i 9679 . . . . . . . . 9  |-  ( 0  +  1 )  =  1
64 3cn 10527 . . . . . . . . . 10  |-  3  e.  CC
6564addid1i 9678 . . . . . . . . 9  |-  ( 3  +  0 )  =  3
6633, 16, 2, 33, 60, 61, 63, 65decadd 10936 . . . . . . . 8  |-  ( 3  +  10 )  = ; 1
3
6754mulid1i 9509 . . . . . . . . . 10  |-  ( 5  x.  1 )  =  5
6862addid1i 9678 . . . . . . . . . 10  |-  ( 1  +  0 )  =  1
6967, 68oveq12i 6208 . . . . . . . . 9  |-  ( ( 5  x.  1 )  +  ( 1  +  0 ) )  =  ( 5  +  1 )
70 5p1e6 10580 . . . . . . . . 9  |-  ( 5  +  1 )  =  6
7169, 70eqtri 2411 . . . . . . . 8  |-  ( ( 5  x.  1 )  +  ( 1  +  0 ) )  =  6
7224mulid1i 9509 . . . . . . . . . 10  |-  ( 2  x.  1 )  =  2
7372oveq1i 6206 . . . . . . . . 9  |-  ( ( 2  x.  1 )  +  3 )  =  ( 2  +  3 )
74 3p2e5 10585 . . . . . . . . . 10  |-  ( 3  +  2 )  =  5
7564, 24, 74addcomli 9683 . . . . . . . . 9  |-  ( 2  +  3 )  =  5
7673, 75, 483eqtri 2415 . . . . . . . 8  |-  ( ( 2  x.  1 )  +  3 )  = ; 0
5
775, 3, 2, 16, 59, 66, 2, 5, 33, 71, 76decmac 10934 . . . . . . 7  |-  ( (; 5
2  x.  1 )  +  ( 3  +  10 ) )  = ; 6
5
782dec0h 10911 . . . . . . . 8  |-  1  = ; 0 1
79 5t2e10 10607 . . . . . . . . . 10  |-  ( 5  x.  2 )  =  10
80 00id 9666 . . . . . . . . . 10  |-  ( 0  +  0 )  =  0
8179, 80oveq12i 6208 . . . . . . . . 9  |-  ( ( 5  x.  2 )  +  ( 0  +  0 ) )  =  ( 10  +  0 )
82 10nn 10618 . . . . . . . . . . 11  |-  10  e.  NN
8382nncni 10462 . . . . . . . . . 10  |-  10  e.  CC
8483addid1i 9678 . . . . . . . . 9  |-  ( 10  +  0 )  =  10
8581, 84eqtri 2411 . . . . . . . 8  |-  ( ( 5  x.  2 )  +  ( 0  +  0 ) )  =  10
86 2t2e4 10602 . . . . . . . . . 10  |-  ( 2  x.  2 )  =  4
8786oveq1i 6206 . . . . . . . . 9  |-  ( ( 2  x.  2 )  +  1 )  =  ( 4  +  1 )
8887, 39, 483eqtri 2415 . . . . . . . 8  |-  ( ( 2  x.  2 )  +  1 )  = ; 0
5
895, 3, 33, 2, 59, 78, 3, 5, 33, 85, 88decmac 10934 . . . . . . 7  |-  ( (; 5
2  x.  2 )  +  1 )  = ; 10 5
902, 3, 16, 2, 47, 57, 19, 5, 58, 77, 89decma2c 10935 . . . . . 6  |-  ( (; 5
2  x. ; 1 2 )  +  ( 5  + ; 2 6 ) )  = ;; 6 5 5
9163oveq2i 6207 . . . . . . . 8  |-  ( ( 5  x.  5 )  +  ( 0  +  1 ) )  =  ( ( 5  x.  5 )  +  1 )
92 5t5e25 10971 . . . . . . . . 9  |-  ( 5  x.  5 )  = ; 2
5
933, 5, 70, 92decsuc 10918 . . . . . . . 8  |-  ( ( 5  x.  5 )  +  1 )  = ; 2
6
9491, 93eqtri 2411 . . . . . . 7  |-  ( ( 5  x.  5 )  +  ( 0  +  1 ) )  = ; 2
6
9554, 24, 79mulcomli 9514 . . . . . . . . 9  |-  ( 2  x.  5 )  =  10
9695, 61eqtri 2411 . . . . . . . 8  |-  ( 2  x.  5 )  = ; 1
0
9764addid2i 9679 . . . . . . . 8  |-  ( 0  +  3 )  =  3
982, 33, 16, 96, 97decaddi 10939 . . . . . . 7  |-  ( ( 2  x.  5 )  +  3 )  = ; 1
3
995, 3, 33, 16, 59, 60, 5, 16, 2, 94, 98decmac 10934 . . . . . 6  |-  ( (; 5
2  x.  5 )  +  3 )  = ;; 2 6 3
1004, 5, 5, 16, 32, 45, 19, 16, 46, 90, 99decma2c 10935 . . . . 5  |-  ( (; 5
2  x. ;; 1 2 5 )  +  ( 6  + ; 4 7 ) )  = ;;; 6 5 5 3
10114dec0h 10911 . . . . . 6  |-  8  = ; 0 8
10250oveq2i 6207 . . . . . . 7  |-  ( ( 5  x.  9 )  +  ( 0  +  2 ) )  =  ( ( 5  x.  9 )  +  2 )
103 9cn 10540 . . . . . . . . 9  |-  9  e.  CC
104 9t5e45 10993 . . . . . . . . 9  |-  ( 9  x.  5 )  = ; 4
5
105103, 54, 104mulcomli 9514 . . . . . . . 8  |-  ( 5  x.  9 )  = ; 4
5
106 5p2e7 10590 . . . . . . . 8  |-  ( 5  +  2 )  =  7
10729, 5, 3, 105, 106decaddi 10939 . . . . . . 7  |-  ( ( 5  x.  9 )  +  2 )  = ; 4
7
108102, 107eqtri 2411 . . . . . 6  |-  ( ( 5  x.  9 )  +  ( 0  +  2 ) )  = ; 4
7
109 9t2e18 10990 . . . . . . . 8  |-  ( 9  x.  2 )  = ; 1
8
110103, 24, 109mulcomli 9514 . . . . . . 7  |-  ( 2  x.  9 )  = ; 1
8
111 1p1e2 10566 . . . . . . 7  |-  ( 1  +  1 )  =  2
112 8p8e16 10956 . . . . . . 7  |-  ( 8  +  8 )  = ; 1
6
1132, 14, 14, 110, 111, 11, 112decaddci 10940 . . . . . 6  |-  ( ( 2  x.  9 )  +  8 )  = ; 2
6
1145, 3, 33, 14, 59, 101, 27, 11, 3, 108, 113decmac 10934 . . . . 5  |-  ( (; 5
2  x.  9 )  +  8 )  = ;; 4 7 6
1156, 27, 11, 14, 1, 28, 19, 11, 31, 100, 114decma2c 10935 . . . 4  |-  ( (; 5
2  x.  N )  + ; 6 8 )  = ;;;; 6 5 5 3 6
116 2exp16 14577 . . . 4  |-  ( 2 ^; 1 6 )  = ;;;; 6 5 5 3 6
117 eqid 2382 . . . . 5  |-  ( 2 ^ 8 )  =  ( 2 ^ 8 )
118 eqid 2382 . . . . 5  |-  ( ( 2 ^ 8 )  x.  ( 2 ^ 8 ) )  =  ( ( 2 ^ 8 )  x.  (
2 ^ 8 ) )
1193, 14, 26, 117, 118numexp2x 14567 . . . 4  |-  ( 2 ^; 1 6 )  =  ( ( 2 ^ 8 )  x.  (
2 ^ 8 ) )
120115, 116, 1193eqtr2i 2417 . . 3  |-  ( (; 5
2  x.  N )  + ; 6 8 )  =  ( ( 2 ^ 8 )  x.  (
2 ^ 8 ) )
1219, 10, 14, 20, 21, 15, 22, 26, 120mod2xi 14557 . 2  |-  ( ( 2 ^; 1 6 )  mod 
N )  =  (; 6
8  mod  N )
122 6p1e7 10581 . . 3  |-  ( 6  +  1 )  =  7
123 eqid 2382 . . 3  |- ; 1 6  = ; 1 6
1242, 11, 122, 123decsuc 10918 . 2  |-  (; 1 6  +  1 )  = ; 1 7
12518nn0cni 10724 . . . 4  |- ;; 1 3 6  e.  CC
126125addid2i 9679 . . 3  |-  ( 0  + ;; 1 3 6 )  = ;; 1 3 6
1279nncni 10462 . . . . 5  |-  N  e.  CC
128127mul02i 9680 . . . 4  |-  ( 0  x.  N )  =  0
129128oveq1i 6206 . . 3  |-  ( ( 0  x.  N )  + ;; 1 3 6 )  =  ( 0  + ;; 1 3 6 )
130 6t2e12 10972 . . . . 5  |-  ( 6  x.  2 )  = ; 1
2
1312, 3, 52, 130decsuc 10918 . . . 4  |-  ( ( 6  x.  2 )  +  1 )  = ; 1
3
1323, 11, 14, 28, 11, 2, 131, 25decmul1c 10942 . . 3  |-  (; 6 8  x.  2 )  = ;; 1 3 6
133126, 129, 1323eqtr4i 2421 . 2  |-  ( ( 0  x.  N )  + ;; 1 3 6 )  =  (; 6
8  x.  2 )
1349, 10, 12, 13, 15, 18, 121, 124, 133modxp1i 14558 1  |-  ( ( 2 ^; 1 7 )  mod 
N )  =  (;; 1 3 6  mod 
N )
Colors of variables: wff setvar class
Syntax hints:    = wceq 1399  (class class class)co 6196   0cc0 9403   1c1 9404    + caddc 9406    x. cmul 9408   NNcn 10452   2c2 10502   3c3 10503   4c4 10504   5c5 10505   6c6 10506   7c7 10507   8c8 10508   9c9 10509   10c10 10510  ;cdc 10895    mod cmo 11896   ^cexp 12069
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1626  ax-4 1639  ax-5 1712  ax-6 1755  ax-7 1798  ax-8 1828  ax-9 1830  ax-10 1845  ax-11 1850  ax-12 1862  ax-13 2006  ax-ext 2360  ax-sep 4488  ax-nul 4496  ax-pow 4543  ax-pr 4601  ax-un 6491  ax-cnex 9459  ax-resscn 9460  ax-1cn 9461  ax-icn 9462  ax-addcl 9463  ax-addrcl 9464  ax-mulcl 9465  ax-mulrcl 9466  ax-mulcom 9467  ax-addass 9468  ax-mulass 9469  ax-distr 9470  ax-i2m1 9471  ax-1ne0 9472  ax-1rid 9473  ax-rnegex 9474  ax-rrecex 9475  ax-cnre 9476  ax-pre-lttri 9477  ax-pre-lttrn 9478  ax-pre-ltadd 9479  ax-pre-mulgt0 9480  ax-pre-sup 9481
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1402  df-ex 1621  df-nf 1625  df-sb 1748  df-eu 2222  df-mo 2223  df-clab 2368  df-cleq 2374  df-clel 2377  df-nfc 2532  df-ne 2579  df-nel 2580  df-ral 2737  df-rex 2738  df-reu 2739  df-rmo 2740  df-rab 2741  df-v 3036  df-sbc 3253  df-csb 3349  df-dif 3392  df-un 3394  df-in 3396  df-ss 3403  df-pss 3405  df-nul 3712  df-if 3858  df-pw 3929  df-sn 3945  df-pr 3947  df-tp 3949  df-op 3951  df-uni 4164  df-iun 4245  df-br 4368  df-opab 4426  df-mpt 4427  df-tr 4461  df-eprel 4705  df-id 4709  df-po 4714  df-so 4715  df-fr 4752  df-we 4754  df-ord 4795  df-on 4796  df-lim 4797  df-suc 4798  df-xp 4919  df-rel 4920  df-cnv 4921  df-co 4922  df-dm 4923  df-rn 4924  df-res 4925  df-ima 4926  df-iota 5460  df-fun 5498  df-fn 5499  df-f 5500  df-f1 5501  df-fo 5502  df-f1o 5503  df-fv 5504  df-riota 6158  df-ov 6199  df-oprab 6200  df-mpt2 6201  df-om 6600  df-2nd 6700  df-recs 6960  df-rdg 6994  df-er 7229  df-en 7436  df-dom 7437  df-sdom 7438  df-sup 7816  df-pnf 9541  df-mnf 9542  df-xr 9543  df-ltxr 9544  df-le 9545  df-sub 9720  df-neg 9721  df-div 10124  df-nn 10453  df-2 10511  df-3 10512  df-4 10513  df-5 10514  df-6 10515  df-7 10516  df-8 10517  df-9 10518  df-10 10519  df-n0 10713  df-z 10782  df-dec 10896  df-uz 11002  df-rp 11140  df-fl 11828  df-mod 11897  df-seq 12011  df-exp 12070
This theorem is referenced by:  1259lem2  14616  1259lem4  14618
  Copyright terms: Public domain W3C validator