Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  0rrv Structured version   Unicode version

Theorem 0rrv 28016
Description: The constant function equal to zero is a random variable. (Contributed by Thierry Arnoux, 16-Jan-2017.) (Revised by Thierry Arnoux, 30-Jan-2017.)
Hypothesis
Ref Expression
0rrv.1  |-  ( ph  ->  P  e. Prob )
Assertion
Ref Expression
0rrv  |-  ( ph  ->  ( x  e.  U. dom  P  |->  0 )  e.  (rRndVar `  P )
)
Distinct variable group:    x, P
Allowed substitution hint:    ph( x)

Proof of Theorem 0rrv
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 0re 9585 . . . . 5  |-  0  e.  RR
21rgenw 2818 . . . 4  |-  A. x  e.  U. dom  P 0  e.  RR
3 eqid 2460 . . . . 5  |-  ( x  e.  U. dom  P  |->  0 )  =  ( x  e.  U. dom  P 
|->  0 )
43fmpt 6033 . . . 4  |-  ( A. x  e.  U. dom  P
0  e.  RR  <->  ( x  e.  U. dom  P  |->  0 ) : U. dom  P --> RR )
52, 4mpbi 208 . . 3  |-  ( x  e.  U. dom  P  |->  0 ) : U. dom  P --> RR
65a1i 11 . 2  |-  ( ph  ->  ( x  e.  U. dom  P  |->  0 ) : U. dom  P --> RR )
7 fconstmpt 5035 . . . . . . . . . 10  |-  ( U. dom  P  X.  { 0 } )  =  ( x  e.  U. dom  P 
|->  0 )
87cnveqi 5168 . . . . . . . . 9  |-  `' ( U. dom  P  X.  { 0 } )  =  `' ( x  e.  U. dom  P  |->  0 )
9 cnvxp 5415 . . . . . . . . 9  |-  `' ( U. dom  P  X.  { 0 } )  =  ( { 0 }  X.  U. dom  P )
108, 9eqtr3i 2491 . . . . . . . 8  |-  `' ( x  e.  U. dom  P 
|->  0 )  =  ( { 0 }  X.  U.
dom  P )
1110imaeq1i 5325 . . . . . . 7  |-  ( `' ( x  e.  U. dom  P  |->  0 ) "
y )  =  ( ( { 0 }  X.  U. dom  P
) " y )
12 df-ima 5005 . . . . . . 7  |-  ( ( { 0 }  X.  U.
dom  P ) "
y )  =  ran  ( ( { 0 }  X.  U. dom  P )  |`  y )
13 df-rn 5003 . . . . . . 7  |-  ran  (
( { 0 }  X.  U. dom  P
)  |`  y )  =  dom  `' ( ( { 0 }  X.  U.
dom  P )  |`  y )
1411, 12, 133eqtri 2493 . . . . . 6  |-  ( `' ( x  e.  U. dom  P  |->  0 ) "
y )  =  dom  `' ( ( { 0 }  X.  U. dom  P )  |`  y )
15 df-res 5004 . . . . . . . . 9  |-  ( ( { 0 }  X.  U.
dom  P )  |`  y )  =  ( ( { 0 }  X.  U. dom  P
)  i^i  ( y  X.  _V ) )
16 inxp 5126 . . . . . . . . 9  |-  ( ( { 0 }  X.  U.
dom  P )  i^i  ( y  X.  _V ) )  =  ( ( { 0 }  i^i  y )  X.  ( U. dom  P  i^i  _V ) )
17 inv1 3805 . . . . . . . . . 10  |-  ( U. dom  P  i^i  _V )  =  U. dom  P
1817xpeq2i 5013 . . . . . . . . 9  |-  ( ( { 0 }  i^i  y )  X.  ( U. dom  P  i^i  _V ) )  =  ( ( { 0 }  i^i  y )  X. 
U. dom  P )
1915, 16, 183eqtri 2493 . . . . . . . 8  |-  ( ( { 0 }  X.  U.
dom  P )  |`  y )  =  ( ( { 0 }  i^i  y )  X. 
U. dom  P )
2019cnveqi 5168 . . . . . . 7  |-  `' ( ( { 0 }  X.  U. dom  P
)  |`  y )  =  `' ( ( { 0 }  i^i  y
)  X.  U. dom  P )
2120dmeqi 5195 . . . . . 6  |-  dom  `' ( ( { 0 }  X.  U. dom  P )  |`  y )  =  dom  `' ( ( { 0 }  i^i  y )  X.  U. dom  P )
22 cnvxp 5415 . . . . . . 7  |-  `' ( ( { 0 }  i^i  y )  X. 
U. dom  P )  =  ( U. dom  P  X.  ( { 0 }  i^i  y ) )
2322dmeqi 5195 . . . . . 6  |-  dom  `' ( ( { 0 }  i^i  y )  X.  U. dom  P
)  =  dom  ( U. dom  P  X.  ( { 0 }  i^i  y ) )
2414, 21, 233eqtri 2493 . . . . 5  |-  ( `' ( x  e.  U. dom  P  |->  0 ) "
y )  =  dom  ( U. dom  P  X.  ( { 0 }  i^i  y ) )
25 xpeq2 5007 . . . . . . . . . 10  |-  ( ( { 0 }  i^i  y )  =  (/)  ->  ( U. dom  P  X.  ( { 0 }  i^i  y ) )  =  ( U. dom  P  X.  (/) ) )
26 xp0 5416 . . . . . . . . . 10  |-  ( U. dom  P  X.  (/) )  =  (/)
2725, 26syl6eq 2517 . . . . . . . . 9  |-  ( ( { 0 }  i^i  y )  =  (/)  ->  ( U. dom  P  X.  ( { 0 }  i^i  y ) )  =  (/) )
2827dmeqd 5196 . . . . . . . 8  |-  ( ( { 0 }  i^i  y )  =  (/)  ->  dom  ( U. dom  P  X.  ( { 0 }  i^i  y ) )  =  dom  (/) )
29 dm0 5207 . . . . . . . 8  |-  dom  (/)  =  (/)
3028, 29syl6eq 2517 . . . . . . 7  |-  ( ( { 0 }  i^i  y )  =  (/)  ->  dom  ( U. dom  P  X.  ( { 0 }  i^i  y ) )  =  (/) )
3130adantl 466 . . . . . 6  |-  ( (
ph  /\  ( {
0 }  i^i  y
)  =  (/) )  ->  dom  ( U. dom  P  X.  ( { 0 }  i^i  y ) )  =  (/) )
32 0rrv.1 . . . . . . . 8  |-  ( ph  ->  P  e. Prob )
33 domprobsiga 27976 . . . . . . . 8  |-  ( P  e. Prob  ->  dom  P  e.  U.
ran sigAlgebra )
34 0elsiga 27740 . . . . . . . 8  |-  ( dom 
P  e.  U. ran sigAlgebra  ->  (/)  e.  dom  P )
3532, 33, 343syl 20 . . . . . . 7  |-  ( ph  -> 
(/)  e.  dom  P )
3635adantr 465 . . . . . 6  |-  ( (
ph  /\  ( {
0 }  i^i  y
)  =  (/) )  ->  (/) 
e.  dom  P )
3731, 36eqeltrd 2548 . . . . 5  |-  ( (
ph  /\  ( {
0 }  i^i  y
)  =  (/) )  ->  dom  ( U. dom  P  X.  ( { 0 }  i^i  y ) )  e.  dom  P )
3824, 37syl5eqel 2552 . . . 4  |-  ( (
ph  /\  ( {
0 }  i^i  y
)  =  (/) )  -> 
( `' ( x  e.  U. dom  P  |->  0 ) " y
)  e.  dom  P
)
39 dmxp 5212 . . . . . . 7  |-  ( ( { 0 }  i^i  y )  =/=  (/)  ->  dom  ( U. dom  P  X.  ( { 0 }  i^i  y ) )  = 
U. dom  P )
4039adantl 466 . . . . . 6  |-  ( (
ph  /\  ( {
0 }  i^i  y
)  =/=  (/) )  ->  dom  ( U. dom  P  X.  ( { 0 }  i^i  y ) )  =  U. dom  P
)
4132unveldomd 27980 . . . . . . 7  |-  ( ph  ->  U. dom  P  e. 
dom  P )
4241adantr 465 . . . . . 6  |-  ( (
ph  /\  ( {
0 }  i^i  y
)  =/=  (/) )  ->  U. dom  P  e.  dom  P )
4340, 42eqeltrd 2548 . . . . 5  |-  ( (
ph  /\  ( {
0 }  i^i  y
)  =/=  (/) )  ->  dom  ( U. dom  P  X.  ( { 0 }  i^i  y ) )  e.  dom  P )
4424, 43syl5eqel 2552 . . . 4  |-  ( (
ph  /\  ( {
0 }  i^i  y
)  =/=  (/) )  -> 
( `' ( x  e.  U. dom  P  |->  0 ) " y
)  e.  dom  P
)
4538, 44pm2.61dane 2778 . . 3  |-  ( ph  ->  ( `' ( x  e.  U. dom  P  |->  0 ) " y
)  e.  dom  P
)
4645ralrimivw 2872 . 2  |-  ( ph  ->  A. y  e. 𝔅  ( `' ( x  e.  U. dom  P  |->  0 ) " y
)  e.  dom  P
)
4732isrrvv 28008 . 2  |-  ( ph  ->  ( ( x  e. 
U. dom  P  |->  0 )  e.  (rRndVar `  P
)  <->  ( ( x  e.  U. dom  P  |->  0 ) : U. dom  P --> RR  /\  A. y  e. 𝔅  ( `' ( x  e.  U. dom  P  |->  0 ) " y
)  e.  dom  P
) ) )
486, 46, 47mpbir2and 915 1  |-  ( ph  ->  ( x  e.  U. dom  P  |->  0 )  e.  (rRndVar `  P )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1374    e. wcel 1762    =/= wne 2655   A.wral 2807   _Vcvv 3106    i^i cin 3468   (/)c0 3778   {csn 4020   U.cuni 4238    |-> cmpt 4498    X. cxp 4990   `'ccnv 4991   dom cdm 4992   ran crn 4993    |` cres 4994   "cima 4995   -->wf 5575   ` cfv 5579   RRcr 9480   0cc0 9481  sigAlgebracsiga 27733  𝔅cbrsiga 27778  Probcprb 27972  rRndVarcrrv 28005
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1961  ax-ext 2438  ax-sep 4561  ax-nul 4569  ax-pow 4618  ax-pr 4679  ax-un 6567  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-i2m1 9549  ax-1ne0 9550  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 969  df-3an 970  df-tru 1377  df-fal 1380  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2272  df-mo 2273  df-clab 2446  df-cleq 2452  df-clel 2455  df-nfc 2610  df-ne 2657  df-nel 2658  df-ral 2812  df-rex 2813  df-rab 2816  df-v 3108  df-sbc 3325  df-csb 3429  df-dif 3472  df-un 3474  df-in 3476  df-ss 3483  df-nul 3779  df-if 3933  df-pw 4005  df-sn 4021  df-pr 4023  df-op 4027  df-uni 4239  df-int 4276  df-iun 4320  df-br 4441  df-opab 4499  df-mpt 4500  df-id 4788  df-po 4793  df-so 4794  df-xp 4998  df-rel 4999  df-cnv 5000  df-co 5001  df-dm 5002  df-rn 5003  df-res 5004  df-ima 5005  df-iota 5542  df-fun 5581  df-fn 5582  df-f 5583  df-f1 5584  df-fo 5585  df-f1o 5586  df-fv 5587  df-ov 6278  df-oprab 6279  df-mpt2 6280  df-1st 6774  df-2nd 6775  df-er 7301  df-map 7412  df-en 7507  df-dom 7508  df-sdom 7509  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-ioo 11522  df-topgen 14688  df-top 19159  df-bases 19161  df-esum 27667  df-siga 27734  df-sigagen 27765  df-brsiga 27779  df-meas 27793  df-mbfm 27848  df-prob 27973  df-rrv 28006
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator