MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0ram Structured version   Unicode version

Theorem 0ram 14396
Description: The Ramsey number when  M  = 
0. (Contributed by Mario Carneiro, 22-Apr-2015.)
Assertion
Ref Expression
0ram  |-  ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e.  ran  F  y  <_  x )  ->  (
0 Ramsey  F )  =  sup ( ran  F ,  RR ,  <  ) )
Distinct variable groups:    x, y, R    x, F, y    x, V
Allowed substitution hint:    V( y)

Proof of Theorem 0ram
Dummy variables  b 
d  z  f  c  s  a  i are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2467 . . 3  |-  ( a  e.  _V ,  i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } )  =  ( a  e.  _V ,  i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } )
2 0nn0 10809 . . . 4  |-  0  e.  NN0
32a1i 11 . . 3  |-  ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e.  ran  F  y  <_  x )  ->  0  e.  NN0 )
4 simpl1 999 . . 3  |-  ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e.  ran  F  y  <_  x )  ->  R  e.  V )
5 simpl3 1001 . . 3  |-  ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e.  ran  F  y  <_  x )  ->  F : R --> NN0 )
6 frn 5736 . . . . 5  |-  ( F : R --> NN0  ->  ran 
F  C_  NN0 )
75, 6syl 16 . . . 4  |-  ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e.  ran  F  y  <_  x )  ->  ran  F 
C_  NN0 )
8 nn0ssz 10884 . . . . . 6  |-  NN0  C_  ZZ
97, 8syl6ss 3516 . . . . 5  |-  ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e.  ran  F  y  <_  x )  ->  ran  F 
C_  ZZ )
10 fdm 5734 . . . . . . . 8  |-  ( F : R --> NN0  ->  dom 
F  =  R )
115, 10syl 16 . . . . . . 7  |-  ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e.  ran  F  y  <_  x )  ->  dom  F  =  R )
12 simpl2 1000 . . . . . . 7  |-  ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e.  ran  F  y  <_  x )  ->  R  =/=  (/) )
1311, 12eqnetrd 2760 . . . . . 6  |-  ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e.  ran  F  y  <_  x )  ->  dom  F  =/=  (/) )
14 dm0rn0 5218 . . . . . . 7  |-  ( dom 
F  =  (/)  <->  ran  F  =  (/) )
1514necon3bii 2735 . . . . . 6  |-  ( dom 
F  =/=  (/)  <->  ran  F  =/=  (/) )
1613, 15sylib 196 . . . . 5  |-  ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e.  ran  F  y  <_  x )  ->  ran  F  =/=  (/) )
17 simpr 461 . . . . 5  |-  ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e.  ran  F  y  <_  x )  ->  E. x  e.  ZZ  A. y  e. 
ran  F  y  <_  x )
18 suprzcl2 11171 . . . . 5  |-  ( ( ran  F  C_  ZZ  /\ 
ran  F  =/=  (/)  /\  E. x  e.  ZZ  A. y  e.  ran  F  y  <_  x )  ->  sup ( ran  F ,  RR ,  <  )  e.  ran  F )
199, 16, 17, 18syl3anc 1228 . . . 4  |-  ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e.  ran  F  y  <_  x )  ->  sup ( ran  F ,  RR ,  <  )  e.  ran  F )
207, 19sseldd 3505 . . 3  |-  ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e.  ran  F  y  <_  x )  ->  sup ( ran  F ,  RR ,  <  )  e.  NN0 )
21 vex 3116 . . . . . . 7  |-  s  e. 
_V
221hashbc0 14381 . . . . . . 7  |-  ( s  e.  _V  ->  (
s ( a  e. 
_V ,  i  e. 
NN0  |->  { b  e. 
~P a  |  (
# `  b )  =  i } ) 0 )  =  { (/)
} )
2321, 22ax-mp 5 . . . . . 6  |-  ( s ( a  e.  _V ,  i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } ) 0 )  =  { (/) }
2423feq2i 5723 . . . . 5  |-  ( f : ( s ( a  e.  _V , 
i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } ) 0 ) --> R  <-> 
f : { (/) } --> R )
2524biimpi 194 . . . 4  |-  ( f : ( s ( a  e.  _V , 
i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } ) 0 ) --> R  ->  f : { (/)
} --> R )
26 simprr 756 . . . . . 6  |-  ( ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e. 
ran  F  y  <_  x )  /\  ( sup ( ran  F ,  RR ,  <  )  <_ 
( # `  s )  /\  f : { (/)
} --> R ) )  ->  f : { (/)
} --> R )
27 0ex 4577 . . . . . . 7  |-  (/)  e.  _V
2827snid 4055 . . . . . 6  |-  (/)  e.  { (/)
}
29 ffvelrn 6018 . . . . . 6  |-  ( ( f : { (/) } --> R  /\  (/)  e.  { (/)
} )  ->  (
f `  (/) )  e.  R )
3026, 28, 29sylancl 662 . . . . 5  |-  ( ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e. 
ran  F  y  <_  x )  /\  ( sup ( ran  F ,  RR ,  <  )  <_ 
( # `  s )  /\  f : { (/)
} --> R ) )  ->  ( f `  (/) )  e.  R )
3121pwid 4024 . . . . . 6  |-  s  e. 
~P s
3231a1i 11 . . . . 5  |-  ( ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e. 
ran  F  y  <_  x )  /\  ( sup ( ran  F ,  RR ,  <  )  <_ 
( # `  s )  /\  f : { (/)
} --> R ) )  ->  s  e.  ~P s )
335adantr 465 . . . . . . . . 9  |-  ( ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e. 
ran  F  y  <_  x )  /\  ( sup ( ran  F ,  RR ,  <  )  <_ 
( # `  s )  /\  f : { (/)
} --> R ) )  ->  F : R --> NN0 )
3433, 30ffvelrnd 6021 . . . . . . . 8  |-  ( ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e. 
ran  F  y  <_  x )  /\  ( sup ( ran  F ,  RR ,  <  )  <_ 
( # `  s )  /\  f : { (/)
} --> R ) )  ->  ( F `  ( f `  (/) ) )  e.  NN0 )
3534nn0red 10852 . . . . . . 7  |-  ( ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e. 
ran  F  y  <_  x )  /\  ( sup ( ran  F ,  RR ,  <  )  <_ 
( # `  s )  /\  f : { (/)
} --> R ) )  ->  ( F `  ( f `  (/) ) )  e.  RR )
3635rexrd 9642 . . . . . 6  |-  ( ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e. 
ran  F  y  <_  x )  /\  ( sup ( ran  F ,  RR ,  <  )  <_ 
( # `  s )  /\  f : { (/)
} --> R ) )  ->  ( F `  ( f `  (/) ) )  e.  RR* )
3720nn0red 10852 . . . . . . . 8  |-  ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e.  ran  F  y  <_  x )  ->  sup ( ran  F ,  RR ,  <  )  e.  RR )
3837rexrd 9642 . . . . . . 7  |-  ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e.  ran  F  y  <_  x )  ->  sup ( ran  F ,  RR ,  <  )  e.  RR* )
3938adantr 465 . . . . . 6  |-  ( ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e. 
ran  F  y  <_  x )  /\  ( sup ( ran  F ,  RR ,  <  )  <_ 
( # `  s )  /\  f : { (/)
} --> R ) )  ->  sup ( ran  F ,  RR ,  <  )  e.  RR* )
40 hashxrcl 12396 . . . . . . 7  |-  ( s  e.  _V  ->  ( # `
 s )  e. 
RR* )
4121, 40mp1i 12 . . . . . 6  |-  ( ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e. 
ran  F  y  <_  x )  /\  ( sup ( ran  F ,  RR ,  <  )  <_ 
( # `  s )  /\  f : { (/)
} --> R ) )  ->  ( # `  s
)  e.  RR* )
429adantr 465 . . . . . . 7  |-  ( ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e. 
ran  F  y  <_  x )  /\  ( sup ( ran  F ,  RR ,  <  )  <_ 
( # `  s )  /\  f : { (/)
} --> R ) )  ->  ran  F  C_  ZZ )
4317adantr 465 . . . . . . 7  |-  ( ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e. 
ran  F  y  <_  x )  /\  ( sup ( ran  F ,  RR ,  <  )  <_ 
( # `  s )  /\  f : { (/)
} --> R ) )  ->  E. x  e.  ZZ  A. y  e.  ran  F  y  <_  x )
44 ffn 5730 . . . . . . . . 9  |-  ( F : R --> NN0  ->  F  Fn  R )
4533, 44syl 16 . . . . . . . 8  |-  ( ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e. 
ran  F  y  <_  x )  /\  ( sup ( ran  F ,  RR ,  <  )  <_ 
( # `  s )  /\  f : { (/)
} --> R ) )  ->  F  Fn  R
)
46 fnfvelrn 6017 . . . . . . . 8  |-  ( ( F  Fn  R  /\  ( f `  (/) )  e.  R )  ->  ( F `  ( f `  (/) ) )  e. 
ran  F )
4745, 30, 46syl2anc 661 . . . . . . 7  |-  ( ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e. 
ran  F  y  <_  x )  /\  ( sup ( ran  F ,  RR ,  <  )  <_ 
( # `  s )  /\  f : { (/)
} --> R ) )  ->  ( F `  ( f `  (/) ) )  e.  ran  F )
48 suprzub 11172 . . . . . . 7  |-  ( ( ran  F  C_  ZZ  /\ 
E. x  e.  ZZ  A. y  e.  ran  F  y  <_  x  /\  ( F `  ( f `  (/) ) )  e. 
ran  F )  -> 
( F `  (
f `  (/) ) )  <_  sup ( ran  F ,  RR ,  <  )
)
4942, 43, 47, 48syl3anc 1228 . . . . . 6  |-  ( ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e. 
ran  F  y  <_  x )  /\  ( sup ( ran  F ,  RR ,  <  )  <_ 
( # `  s )  /\  f : { (/)
} --> R ) )  ->  ( F `  ( f `  (/) ) )  <_  sup ( ran  F ,  RR ,  <  )
)
50 simprl 755 . . . . . 6  |-  ( ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e. 
ran  F  y  <_  x )  /\  ( sup ( ran  F ,  RR ,  <  )  <_ 
( # `  s )  /\  f : { (/)
} --> R ) )  ->  sup ( ran  F ,  RR ,  <  )  <_  ( # `  s
) )
5136, 39, 41, 49, 50xrletrd 11364 . . . . 5  |-  ( ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e. 
ran  F  y  <_  x )  /\  ( sup ( ran  F ,  RR ,  <  )  <_ 
( # `  s )  /\  f : { (/)
} --> R ) )  ->  ( F `  ( f `  (/) ) )  <_  ( # `  s
) )
5228a1i 11 . . . . . 6  |-  ( ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e. 
ran  F  y  <_  x )  /\  ( sup ( ran  F ,  RR ,  <  )  <_ 
( # `  s )  /\  f : { (/)
} --> R ) )  ->  (/)  e.  { (/) } )
53 fvex 5875 . . . . . . . 8  |-  ( f `
 (/) )  e.  _V
5453snid 4055 . . . . . . 7  |-  ( f `
 (/) )  e.  {
( f `  (/) ) }
5554a1i 11 . . . . . 6  |-  ( ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e. 
ran  F  y  <_  x )  /\  ( sup ( ran  F ,  RR ,  <  )  <_ 
( # `  s )  /\  f : { (/)
} --> R ) )  ->  ( f `  (/) )  e.  { ( f `  (/) ) } )
56 ffn 5730 . . . . . . 7  |-  ( f : { (/) } --> R  -> 
f  Fn  { (/) } )
57 elpreima 6000 . . . . . . 7  |-  ( f  Fn  { (/) }  ->  (
(/)  e.  ( `' f " { ( f `
 (/) ) } )  <-> 
( (/)  e.  { (/) }  /\  ( f `  (/) )  e.  { ( f `  (/) ) } ) ) )
5826, 56, 573syl 20 . . . . . 6  |-  ( ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e. 
ran  F  y  <_  x )  /\  ( sup ( ran  F ,  RR ,  <  )  <_ 
( # `  s )  /\  f : { (/)
} --> R ) )  ->  ( (/)  e.  ( `' f " {
( f `  (/) ) } )  <->  ( (/)  e.  { (/)
}  /\  ( f `  (/) )  e.  {
( f `  (/) ) } ) ) )
5952, 55, 58mpbir2and 920 . . . . 5  |-  ( ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e. 
ran  F  y  <_  x )  /\  ( sup ( ran  F ,  RR ,  <  )  <_ 
( # `  s )  /\  f : { (/)
} --> R ) )  ->  (/)  e.  ( `' f " { ( f `  (/) ) } ) )
60 fveq2 5865 . . . . . . . 8  |-  ( c  =  ( f `  (/) )  ->  ( F `  c )  =  ( F `  ( f `
 (/) ) ) )
6160breq1d 4457 . . . . . . 7  |-  ( c  =  ( f `  (/) )  ->  ( ( F `  c )  <_  ( # `  z
)  <->  ( F `  ( f `  (/) ) )  <_  ( # `  z
) ) )
62 vex 3116 . . . . . . . . . . 11  |-  z  e. 
_V
631hashbc0 14381 . . . . . . . . . . 11  |-  ( z  e.  _V  ->  (
z ( a  e. 
_V ,  i  e. 
NN0  |->  { b  e. 
~P a  |  (
# `  b )  =  i } ) 0 )  =  { (/)
} )
6462, 63ax-mp 5 . . . . . . . . . 10  |-  ( z ( a  e.  _V ,  i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } ) 0 )  =  { (/) }
6564sseq1i 3528 . . . . . . . . 9  |-  ( ( z ( a  e. 
_V ,  i  e. 
NN0  |->  { b  e. 
~P a  |  (
# `  b )  =  i } ) 0 )  C_  ( `' f " {
c } )  <->  { (/) }  C_  ( `' f " {
c } ) )
6627snss 4151 . . . . . . . . 9  |-  ( (/)  e.  ( `' f " { c } )  <->  { (/) }  C_  ( `' f " {
c } ) )
6765, 66bitr4i 252 . . . . . . . 8  |-  ( ( z ( a  e. 
_V ,  i  e. 
NN0  |->  { b  e. 
~P a  |  (
# `  b )  =  i } ) 0 )  C_  ( `' f " {
c } )  <->  (/)  e.  ( `' f " {
c } ) )
68 sneq 4037 . . . . . . . . . 10  |-  ( c  =  ( f `  (/) )  ->  { c }  =  { (
f `  (/) ) } )
6968imaeq2d 5336 . . . . . . . . 9  |-  ( c  =  ( f `  (/) )  ->  ( `' f " { c } )  =  ( `' f " { ( f `  (/) ) } ) )
7069eleq2d 2537 . . . . . . . 8  |-  ( c  =  ( f `  (/) )  ->  ( (/)  e.  ( `' f " {
c } )  <->  (/)  e.  ( `' f " {
( f `  (/) ) } ) ) )
7167, 70syl5bb 257 . . . . . . 7  |-  ( c  =  ( f `  (/) )  ->  ( (
z ( a  e. 
_V ,  i  e. 
NN0  |->  { b  e. 
~P a  |  (
# `  b )  =  i } ) 0 )  C_  ( `' f " {
c } )  <->  (/)  e.  ( `' f " {
( f `  (/) ) } ) ) )
7261, 71anbi12d 710 . . . . . 6  |-  ( c  =  ( f `  (/) )  ->  ( (
( F `  c
)  <_  ( # `  z
)  /\  ( z
( a  e.  _V ,  i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } ) 0 )  C_  ( `' f " {
c } ) )  <-> 
( ( F `  ( f `  (/) ) )  <_  ( # `  z
)  /\  (/)  e.  ( `' f " {
( f `  (/) ) } ) ) ) )
73 fveq2 5865 . . . . . . . 8  |-  ( z  =  s  ->  ( # `
 z )  =  ( # `  s
) )
7473breq2d 4459 . . . . . . 7  |-  ( z  =  s  ->  (
( F `  (
f `  (/) ) )  <_  ( # `  z
)  <->  ( F `  ( f `  (/) ) )  <_  ( # `  s
) ) )
7574anbi1d 704 . . . . . 6  |-  ( z  =  s  ->  (
( ( F `  ( f `  (/) ) )  <_  ( # `  z
)  /\  (/)  e.  ( `' f " {
( f `  (/) ) } ) )  <->  ( ( F `  ( f `  (/) ) )  <_ 
( # `  s )  /\  (/)  e.  ( `' f " { ( f `  (/) ) } ) ) ) )
7672, 75rspc2ev 3225 . . . . 5  |-  ( ( ( f `  (/) )  e.  R  /\  s  e. 
~P s  /\  (
( F `  (
f `  (/) ) )  <_  ( # `  s
)  /\  (/)  e.  ( `' f " {
( f `  (/) ) } ) ) )  ->  E. c  e.  R  E. z  e.  ~P  s ( ( F `
 c )  <_ 
( # `  z )  /\  ( z ( a  e.  _V , 
i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } ) 0 )  C_  ( `' f " {
c } ) ) )
7730, 32, 51, 59, 76syl112anc 1232 . . . 4  |-  ( ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e. 
ran  F  y  <_  x )  /\  ( sup ( ran  F ,  RR ,  <  )  <_ 
( # `  s )  /\  f : { (/)
} --> R ) )  ->  E. c  e.  R  E. z  e.  ~P  s ( ( F `
 c )  <_ 
( # `  z )  /\  ( z ( a  e.  _V , 
i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } ) 0 )  C_  ( `' f " {
c } ) ) )
7825, 77sylanr2 653 . . 3  |-  ( ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e. 
ran  F  y  <_  x )  /\  ( sup ( ran  F ,  RR ,  <  )  <_ 
( # `  s )  /\  f : ( s ( a  e. 
_V ,  i  e. 
NN0  |->  { b  e. 
~P a  |  (
# `  b )  =  i } ) 0 ) --> R ) )  ->  E. c  e.  R  E. z  e.  ~P  s ( ( F `  c )  <_  ( # `  z
)  /\  ( z
( a  e.  _V ,  i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } ) 0 )  C_  ( `' f " {
c } ) ) )
791, 3, 4, 5, 20, 78ramub 14389 . 2  |-  ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e.  ran  F  y  <_  x )  ->  (
0 Ramsey  F )  <_  sup ( ran  F ,  RR ,  <  ) )
80 fvelrnb 5914 . . . . 5  |-  ( F  Fn  R  ->  ( sup ( ran  F ,  RR ,  <  )  e. 
ran  F  <->  E. c  e.  R  ( F `  c )  =  sup ( ran 
F ,  RR ,  <  ) ) )
815, 44, 803syl 20 . . . 4  |-  ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e.  ran  F  y  <_  x )  ->  ( sup ( ran  F ,  RR ,  <  )  e. 
ran  F  <->  E. c  e.  R  ( F `  c )  =  sup ( ran 
F ,  RR ,  <  ) ) )
8219, 81mpbid 210 . . 3  |-  ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e.  ran  F  y  <_  x )  ->  E. c  e.  R  ( F `  c )  =  sup ( ran  F ,  RR ,  <  ) )
832a1i 11 . . . . . . . . 9  |-  ( ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e. 
ran  F  y  <_  x )  /\  ( c  e.  R  /\  ( F `  c )  e.  NN ) )  -> 
0  e.  NN0 )
84 simpll1 1035 . . . . . . . . 9  |-  ( ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e. 
ran  F  y  <_  x )  /\  ( c  e.  R  /\  ( F `  c )  e.  NN ) )  ->  R  e.  V )
85 simpll3 1037 . . . . . . . . 9  |-  ( ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e. 
ran  F  y  <_  x )  /\  ( c  e.  R  /\  ( F `  c )  e.  NN ) )  ->  F : R --> NN0 )
86 nnm1nn0 10836 . . . . . . . . . 10  |-  ( ( F `  c )  e.  NN  ->  (
( F `  c
)  -  1 )  e.  NN0 )
8786ad2antll 728 . . . . . . . . 9  |-  ( ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e. 
ran  F  y  <_  x )  /\  ( c  e.  R  /\  ( F `  c )  e.  NN ) )  -> 
( ( F `  c )  -  1 )  e.  NN0 )
88 vex 3116 . . . . . . . . . . . . 13  |-  c  e. 
_V
8927, 88f1osn 5852 . . . . . . . . . . . 12  |-  { <. (/)
,  c >. } : { (/) } -1-1-onto-> { c }
90 f1of 5815 . . . . . . . . . . . 12  |-  ( {
<. (/) ,  c >. } : { (/) } -1-1-onto-> { c }  ->  {
<. (/) ,  c >. } : { (/) } --> { c } )
9189, 90ax-mp 5 . . . . . . . . . . 11  |-  { <. (/)
,  c >. } : { (/) } --> { c }
92 simprl 755 . . . . . . . . . . . 12  |-  ( ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e. 
ran  F  y  <_  x )  /\  ( c  e.  R  /\  ( F `  c )  e.  NN ) )  -> 
c  e.  R )
9392snssd 4172 . . . . . . . . . . 11  |-  ( ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e. 
ran  F  y  <_  x )  /\  ( c  e.  R  /\  ( F `  c )  e.  NN ) )  ->  { c }  C_  R )
94 fss 5738 . . . . . . . . . . 11  |-  ( ( { <. (/) ,  c >. } : { (/) } --> { c }  /\  { c }  C_  R )  ->  { <. (/) ,  c >. } : { (/) } --> R )
9591, 93, 94sylancr 663 . . . . . . . . . 10  |-  ( ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e. 
ran  F  y  <_  x )  /\  ( c  e.  R  /\  ( F `  c )  e.  NN ) )  ->  { <. (/) ,  c >. } : { (/) } --> R )
96 ovex 6308 . . . . . . . . . . . 12  |-  ( 1 ... ( ( F `
 c )  - 
1 ) )  e. 
_V
971hashbc0 14381 . . . . . . . . . . . 12  |-  ( ( 1 ... ( ( F `  c )  -  1 ) )  e.  _V  ->  (
( 1 ... (
( F `  c
)  -  1 ) ) ( a  e. 
_V ,  i  e. 
NN0  |->  { b  e. 
~P a  |  (
# `  b )  =  i } ) 0 )  =  { (/)
} )
9896, 97ax-mp 5 . . . . . . . . . . 11  |-  ( ( 1 ... ( ( F `  c )  -  1 ) ) ( a  e.  _V ,  i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } ) 0 )  =  { (/) }
9998feq2i 5723 . . . . . . . . . 10  |-  ( {
<. (/) ,  c >. } : ( ( 1 ... ( ( F `
 c )  - 
1 ) ) ( a  e.  _V , 
i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } ) 0 ) --> R  <->  { <. (/) ,  c >. } : { (/) } --> R )
10095, 99sylibr 212 . . . . . . . . 9  |-  ( ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e. 
ran  F  y  <_  x )  /\  ( c  e.  R  /\  ( F `  c )  e.  NN ) )  ->  { <. (/) ,  c >. } : ( ( 1 ... ( ( F `
 c )  - 
1 ) ) ( a  e.  _V , 
i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } ) 0 ) --> R )
10164sseq1i 3528 . . . . . . . . . . 11  |-  ( ( z ( a  e. 
_V ,  i  e. 
NN0  |->  { b  e. 
~P a  |  (
# `  b )  =  i } ) 0 )  C_  ( `' { <. (/) ,  c >. } " { d } )  <->  { (/) }  C_  ( `' { <. (/) ,  c >. } " { d } ) )
10227snss 4151 . . . . . . . . . . 11  |-  ( (/)  e.  ( `' { <. (/)
,  c >. } " { d } )  <->  { (/) }  C_  ( `' { <. (/) ,  c >. } " { d } ) )
103101, 102bitr4i 252 . . . . . . . . . 10  |-  ( ( z ( a  e. 
_V ,  i  e. 
NN0  |->  { b  e. 
~P a  |  (
# `  b )  =  i } ) 0 )  C_  ( `' { <. (/) ,  c >. } " { d } )  <->  (/)  e.  ( `' { <. (/) ,  c >. } " { d } ) )
104 fzfid 12050 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R
--> NN0 )  /\  E. x  e.  ZZ  A. y  e.  ran  F  y  <_  x )  /\  (
c  e.  R  /\  ( F `  c )  e.  NN ) )  /\  ( d  e.  R  /\  z  C_  ( 1 ... (
( F `  c
)  -  1 ) ) ) )  -> 
( 1 ... (
( F `  c
)  -  1 ) )  e.  Fin )
105 simprr 756 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R
--> NN0 )  /\  E. x  e.  ZZ  A. y  e.  ran  F  y  <_  x )  /\  (
c  e.  R  /\  ( F `  c )  e.  NN ) )  /\  ( d  e.  R  /\  z  C_  ( 1 ... (
( F `  c
)  -  1 ) ) ) )  -> 
z  C_  ( 1 ... ( ( F `
 c )  - 
1 ) ) )
106 ssdomg 7561 . . . . . . . . . . . . . . 15  |-  ( ( 1 ... ( ( F `  c )  -  1 ) )  e.  Fin  ->  (
z  C_  ( 1 ... ( ( F `
 c )  - 
1 ) )  -> 
z  ~<_  ( 1 ... ( ( F `  c )  -  1 ) ) ) )
107104, 105, 106sylc 60 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R
--> NN0 )  /\  E. x  e.  ZZ  A. y  e.  ran  F  y  <_  x )  /\  (
c  e.  R  /\  ( F `  c )  e.  NN ) )  /\  ( d  e.  R  /\  z  C_  ( 1 ... (
( F `  c
)  -  1 ) ) ) )  -> 
z  ~<_  ( 1 ... ( ( F `  c )  -  1 ) ) )
108 ssfi 7740 . . . . . . . . . . . . . . . 16  |-  ( ( ( 1 ... (
( F `  c
)  -  1 ) )  e.  Fin  /\  z  C_  ( 1 ... ( ( F `  c )  -  1 ) ) )  -> 
z  e.  Fin )
109104, 105, 108syl2anc 661 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R
--> NN0 )  /\  E. x  e.  ZZ  A. y  e.  ran  F  y  <_  x )  /\  (
c  e.  R  /\  ( F `  c )  e.  NN ) )  /\  ( d  e.  R  /\  z  C_  ( 1 ... (
( F `  c
)  -  1 ) ) ) )  -> 
z  e.  Fin )
110 hashdom 12414 . . . . . . . . . . . . . . 15  |-  ( ( z  e.  Fin  /\  ( 1 ... (
( F `  c
)  -  1 ) )  e.  Fin )  ->  ( ( # `  z
)  <_  ( # `  (
1 ... ( ( F `
 c )  - 
1 ) ) )  <-> 
z  ~<_  ( 1 ... ( ( F `  c )  -  1 ) ) ) )
111109, 104, 110syl2anc 661 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R
--> NN0 )  /\  E. x  e.  ZZ  A. y  e.  ran  F  y  <_  x )  /\  (
c  e.  R  /\  ( F `  c )  e.  NN ) )  /\  ( d  e.  R  /\  z  C_  ( 1 ... (
( F `  c
)  -  1 ) ) ) )  -> 
( ( # `  z
)  <_  ( # `  (
1 ... ( ( F `
 c )  - 
1 ) ) )  <-> 
z  ~<_  ( 1 ... ( ( F `  c )  -  1 ) ) ) )
112107, 111mpbird 232 . . . . . . . . . . . . 13  |-  ( ( ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R
--> NN0 )  /\  E. x  e.  ZZ  A. y  e.  ran  F  y  <_  x )  /\  (
c  e.  R  /\  ( F `  c )  e.  NN ) )  /\  ( d  e.  R  /\  z  C_  ( 1 ... (
( F `  c
)  -  1 ) ) ) )  -> 
( # `  z )  <_  ( # `  (
1 ... ( ( F `
 c )  - 
1 ) ) ) )
11387adantr 465 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R
--> NN0 )  /\  E. x  e.  ZZ  A. y  e.  ran  F  y  <_  x )  /\  (
c  e.  R  /\  ( F `  c )  e.  NN ) )  /\  ( d  e.  R  /\  z  C_  ( 1 ... (
( F `  c
)  -  1 ) ) ) )  -> 
( ( F `  c )  -  1 )  e.  NN0 )
114 hashfz1 12386 . . . . . . . . . . . . . 14  |-  ( ( ( F `  c
)  -  1 )  e.  NN0  ->  ( # `  ( 1 ... (
( F `  c
)  -  1 ) ) )  =  ( ( F `  c
)  -  1 ) )
115113, 114syl 16 . . . . . . . . . . . . 13  |-  ( ( ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R
--> NN0 )  /\  E. x  e.  ZZ  A. y  e.  ran  F  y  <_  x )  /\  (
c  e.  R  /\  ( F `  c )  e.  NN ) )  /\  ( d  e.  R  /\  z  C_  ( 1 ... (
( F `  c
)  -  1 ) ) ) )  -> 
( # `  ( 1 ... ( ( F `
 c )  - 
1 ) ) )  =  ( ( F `
 c )  - 
1 ) )
116112, 115breqtrd 4471 . . . . . . . . . . . 12  |-  ( ( ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R
--> NN0 )  /\  E. x  e.  ZZ  A. y  e.  ran  F  y  <_  x )  /\  (
c  e.  R  /\  ( F `  c )  e.  NN ) )  /\  ( d  e.  R  /\  z  C_  ( 1 ... (
( F `  c
)  -  1 ) ) ) )  -> 
( # `  z )  <_  ( ( F `
 c )  - 
1 ) )
117 hashcl 12395 . . . . . . . . . . . . . 14  |-  ( z  e.  Fin  ->  ( # `
 z )  e. 
NN0 )
118109, 117syl 16 . . . . . . . . . . . . 13  |-  ( ( ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R
--> NN0 )  /\  E. x  e.  ZZ  A. y  e.  ran  F  y  <_  x )  /\  (
c  e.  R  /\  ( F `  c )  e.  NN ) )  /\  ( d  e.  R  /\  z  C_  ( 1 ... (
( F `  c
)  -  1 ) ) ) )  -> 
( # `  z )  e.  NN0 )
1195ffvelrnda 6020 . . . . . . . . . . . . . . 15  |-  ( ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e. 
ran  F  y  <_  x )  /\  c  e.  R )  ->  ( F `  c )  e.  NN0 )
120119adantrr 716 . . . . . . . . . . . . . 14  |-  ( ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e. 
ran  F  y  <_  x )  /\  ( c  e.  R  /\  ( F `  c )  e.  NN ) )  -> 
( F `  c
)  e.  NN0 )
121120adantr 465 . . . . . . . . . . . . 13  |-  ( ( ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R
--> NN0 )  /\  E. x  e.  ZZ  A. y  e.  ran  F  y  <_  x )  /\  (
c  e.  R  /\  ( F `  c )  e.  NN ) )  /\  ( d  e.  R  /\  z  C_  ( 1 ... (
( F `  c
)  -  1 ) ) ) )  -> 
( F `  c
)  e.  NN0 )
122 nn0ltlem1 10921 . . . . . . . . . . . . 13  |-  ( ( ( # `  z
)  e.  NN0  /\  ( F `  c )  e.  NN0 )  -> 
( ( # `  z
)  <  ( F `  c )  <->  ( # `  z
)  <_  ( ( F `  c )  -  1 ) ) )
123118, 121, 122syl2anc 661 . . . . . . . . . . . 12  |-  ( ( ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R
--> NN0 )  /\  E. x  e.  ZZ  A. y  e.  ran  F  y  <_  x )  /\  (
c  e.  R  /\  ( F `  c )  e.  NN ) )  /\  ( d  e.  R  /\  z  C_  ( 1 ... (
( F `  c
)  -  1 ) ) ) )  -> 
( ( # `  z
)  <  ( F `  c )  <->  ( # `  z
)  <_  ( ( F `  c )  -  1 ) ) )
124116, 123mpbird 232 . . . . . . . . . . 11  |-  ( ( ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R
--> NN0 )  /\  E. x  e.  ZZ  A. y  e.  ran  F  y  <_  x )  /\  (
c  e.  R  /\  ( F `  c )  e.  NN ) )  /\  ( d  e.  R  /\  z  C_  ( 1 ... (
( F `  c
)  -  1 ) ) ) )  -> 
( # `  z )  <  ( F `  c ) )
12527, 88fvsn 6093 . . . . . . . . . . . . . . 15  |-  ( {
<. (/) ,  c >. } `  (/) )  =  c
126 f1ofn 5816 . . . . . . . . . . . . . . . . 17  |-  ( {
<. (/) ,  c >. } : { (/) } -1-1-onto-> { c }  ->  {
<. (/) ,  c >. }  Fn  { (/) } )
127 elpreima 6000 . . . . . . . . . . . . . . . . 17  |-  ( {
<. (/) ,  c >. }  Fn  { (/) }  ->  (
(/)  e.  ( `' { <. (/) ,  c >. } " { d } )  <->  ( (/)  e.  { (/)
}  /\  ( { <.
(/) ,  c >. } `
 (/) )  e.  {
d } ) ) )
12889, 126, 127mp2b 10 . . . . . . . . . . . . . . . 16  |-  ( (/)  e.  ( `' { <. (/)
,  c >. } " { d } )  <-> 
( (/)  e.  { (/) }  /\  ( { <. (/)
,  c >. } `  (/) )  e.  { d } ) )
129128simprbi 464 . . . . . . . . . . . . . . 15  |-  ( (/)  e.  ( `' { <. (/)
,  c >. } " { d } )  ->  ( { <. (/)
,  c >. } `  (/) )  e.  { d } )
130125, 129syl5eqelr 2560 . . . . . . . . . . . . . 14  |-  ( (/)  e.  ( `' { <. (/)
,  c >. } " { d } )  ->  c  e.  {
d } )
131 elsni 4052 . . . . . . . . . . . . . 14  |-  ( c  e.  { d }  ->  c  =  d )
132130, 131syl 16 . . . . . . . . . . . . 13  |-  ( (/)  e.  ( `' { <. (/)
,  c >. } " { d } )  ->  c  =  d )
133132fveq2d 5869 . . . . . . . . . . . 12  |-  ( (/)  e.  ( `' { <. (/)
,  c >. } " { d } )  ->  ( F `  c )  =  ( F `  d ) )
134133breq2d 4459 . . . . . . . . . . 11  |-  ( (/)  e.  ( `' { <. (/)
,  c >. } " { d } )  ->  ( ( # `  z )  <  ( F `  c )  <->  (
# `  z )  <  ( F `  d
) ) )
135124, 134syl5ibcom 220 . . . . . . . . . 10  |-  ( ( ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R
--> NN0 )  /\  E. x  e.  ZZ  A. y  e.  ran  F  y  <_  x )  /\  (
c  e.  R  /\  ( F `  c )  e.  NN ) )  /\  ( d  e.  R  /\  z  C_  ( 1 ... (
( F `  c
)  -  1 ) ) ) )  -> 
( (/)  e.  ( `' { <. (/) ,  c >. } " { d } )  ->  ( # `  z
)  <  ( F `  d ) ) )
136103, 135syl5bi 217 . . . . . . . . 9  |-  ( ( ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R
--> NN0 )  /\  E. x  e.  ZZ  A. y  e.  ran  F  y  <_  x )  /\  (
c  e.  R  /\  ( F `  c )  e.  NN ) )  /\  ( d  e.  R  /\  z  C_  ( 1 ... (
( F `  c
)  -  1 ) ) ) )  -> 
( ( z ( a  e.  _V , 
i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } ) 0 )  C_  ( `' { <. (/) ,  c >. } " { d } )  ->  ( # `  z
)  <  ( F `  d ) ) )
1371, 83, 84, 85, 87, 100, 136ramlb 14395 . . . . . . . 8  |-  ( ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e. 
ran  F  y  <_  x )  /\  ( c  e.  R  /\  ( F `  c )  e.  NN ) )  -> 
( ( F `  c )  -  1 )  <  ( 0 Ramsey  F ) )
138 ramubcl 14394 . . . . . . . . . . 11  |-  ( ( ( 0  e.  NN0  /\  R  e.  V  /\  F : R --> NN0 )  /\  ( sup ( ran 
F ,  RR ,  <  )  e.  NN0  /\  ( 0 Ramsey  F )  <_  sup ( ran  F ,  RR ,  <  ) ) )  ->  ( 0 Ramsey  F )  e.  NN0 )
1393, 4, 5, 20, 79, 138syl32anc 1236 . . . . . . . . . 10  |-  ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e.  ran  F  y  <_  x )  ->  (
0 Ramsey  F )  e.  NN0 )
140139adantr 465 . . . . . . . . 9  |-  ( ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e. 
ran  F  y  <_  x )  /\  ( c  e.  R  /\  ( F `  c )  e.  NN ) )  -> 
( 0 Ramsey  F )  e.  NN0 )
141 nn0lem1lt 10925 . . . . . . . . 9  |-  ( ( ( F `  c
)  e.  NN0  /\  ( 0 Ramsey  F )  e. 
NN0 )  ->  (
( F `  c
)  <_  ( 0 Ramsey  F )  <->  ( ( F `  c )  -  1 )  < 
( 0 Ramsey  F ) ) )
142120, 140, 141syl2anc 661 . . . . . . . 8  |-  ( ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e. 
ran  F  y  <_  x )  /\  ( c  e.  R  /\  ( F `  c )  e.  NN ) )  -> 
( ( F `  c )  <_  (
0 Ramsey  F )  <->  ( ( F `  c )  -  1 )  < 
( 0 Ramsey  F ) ) )
143137, 142mpbird 232 . . . . . . 7  |-  ( ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e. 
ran  F  y  <_  x )  /\  ( c  e.  R  /\  ( F `  c )  e.  NN ) )  -> 
( F `  c
)  <_  ( 0 Ramsey  F ) )
144143expr 615 . . . . . 6  |-  ( ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e. 
ran  F  y  <_  x )  /\  c  e.  R )  ->  (
( F `  c
)  e.  NN  ->  ( F `  c )  <_  ( 0 Ramsey  F
) ) )
145139adantr 465 . . . . . . . 8  |-  ( ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e. 
ran  F  y  <_  x )  /\  c  e.  R )  ->  (
0 Ramsey  F )  e.  NN0 )
146145nn0ge0d 10854 . . . . . . 7  |-  ( ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e. 
ran  F  y  <_  x )  /\  c  e.  R )  ->  0  <_  ( 0 Ramsey  F ) )
147 breq1 4450 . . . . . . 7  |-  ( ( F `  c )  =  0  ->  (
( F `  c
)  <_  ( 0 Ramsey  F )  <->  0  <_  ( 0 Ramsey  F ) ) )
148146, 147syl5ibrcom 222 . . . . . 6  |-  ( ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e. 
ran  F  y  <_  x )  /\  c  e.  R )  ->  (
( F `  c
)  =  0  -> 
( F `  c
)  <_  ( 0 Ramsey  F ) ) )
149 elnn0 10796 . . . . . . 7  |-  ( ( F `  c )  e.  NN0  <->  ( ( F `
 c )  e.  NN  \/  ( F `
 c )  =  0 ) )
150119, 149sylib 196 . . . . . 6  |-  ( ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e. 
ran  F  y  <_  x )  /\  c  e.  R )  ->  (
( F `  c
)  e.  NN  \/  ( F `  c )  =  0 ) )
151144, 148, 150mpjaod 381 . . . . 5  |-  ( ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e. 
ran  F  y  <_  x )  /\  c  e.  R )  ->  ( F `  c )  <_  ( 0 Ramsey  F ) )
152 breq1 4450 . . . . 5  |-  ( ( F `  c )  =  sup ( ran 
F ,  RR ,  <  )  ->  ( ( F `  c )  <_  ( 0 Ramsey  F )  <->  sup ( ran  F ,  RR ,  <  )  <_ 
( 0 Ramsey  F ) ) )
153151, 152syl5ibcom 220 . . . 4  |-  ( ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e. 
ran  F  y  <_  x )  /\  c  e.  R )  ->  (
( F `  c
)  =  sup ( ran  F ,  RR ,  <  )  ->  sup ( ran  F ,  RR ,  <  )  <_  ( 0 Ramsey  F ) ) )
154153rexlimdva 2955 . . 3  |-  ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e.  ran  F  y  <_  x )  ->  ( E. c  e.  R  ( F `  c )  =  sup ( ran 
F ,  RR ,  <  )  ->  sup ( ran  F ,  RR ,  <  )  <_  ( 0 Ramsey  F ) ) )
15582, 154mpd 15 . 2  |-  ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e.  ran  F  y  <_  x )  ->  sup ( ran  F ,  RR ,  <  )  <_  (
0 Ramsey  F ) )
156139nn0red 10852 . . 3  |-  ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e.  ran  F  y  <_  x )  ->  (
0 Ramsey  F )  e.  RR )
157156, 37letri3d 9725 . 2  |-  ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e.  ran  F  y  <_  x )  ->  (
( 0 Ramsey  F )  =  sup ( ran 
F ,  RR ,  <  )  <->  ( ( 0 Ramsey  F )  <_  sup ( ran  F ,  RR ,  <  )  /\  sup ( ran  F ,  RR ,  <  )  <_  (
0 Ramsey  F ) ) ) )
15879, 155, 157mpbir2and 920 1  |-  ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e.  ran  F  y  <_  x )  ->  (
0 Ramsey  F )  =  sup ( ran  F ,  RR ,  <  ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767    =/= wne 2662   A.wral 2814   E.wrex 2815   {crab 2818   _Vcvv 3113    C_ wss 3476   (/)c0 3785   ~Pcpw 4010   {csn 4027   <.cop 4033   class class class wbr 4447   `'ccnv 4998   dom cdm 4999   ran crn 5000   "cima 5002    Fn wfn 5582   -->wf 5583   -1-1-onto->wf1o 5586   ` cfv 5587  (class class class)co 6283    |-> cmpt2 6285    ~<_ cdom 7514   Fincfn 7516   supcsup 7899   RRcr 9490   0cc0 9491   1c1 9492   RR*cxr 9626    < clt 9627    <_ cle 9628    - cmin 9804   NNcn 10535   NN0cn0 10794   ZZcz 10863   ...cfz 11671   #chash 12372   Ramsey cram 14375
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6575  ax-cnex 9547  ax-resscn 9548  ax-1cn 9549  ax-icn 9550  ax-addcl 9551  ax-addrcl 9552  ax-mulcl 9553  ax-mulrcl 9554  ax-mulcom 9555  ax-addass 9556  ax-mulass 9557  ax-distr 9558  ax-i2m1 9559  ax-1ne0 9560  ax-1rid 9561  ax-rnegex 9562  ax-rrecex 9563  ax-cnre 9564  ax-pre-lttri 9565  ax-pre-lttrn 9566  ax-pre-ltadd 9567  ax-pre-mulgt0 9568
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5550  df-fun 5589  df-fn 5590  df-f 5591  df-f1 5592  df-fo 5593  df-f1o 5594  df-fv 5595  df-riota 6244  df-ov 6286  df-oprab 6287  df-mpt2 6288  df-om 6680  df-1st 6784  df-2nd 6785  df-recs 7042  df-rdg 7076  df-1o 7130  df-oadd 7134  df-er 7311  df-map 7422  df-en 7517  df-dom 7518  df-sdom 7519  df-fin 7520  df-sup 7900  df-card 8319  df-pnf 9629  df-mnf 9630  df-xr 9631  df-ltxr 9632  df-le 9633  df-sub 9806  df-neg 9807  df-nn 10536  df-n0 10795  df-z 10864  df-uz 11082  df-fz 11672  df-hash 12373  df-ram 14377
This theorem is referenced by:  0ram2  14397  ramz  14401
  Copyright terms: Public domain W3C validator