MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0ram Structured version   Unicode version

Theorem 0ram 14550
Description: The Ramsey number when  M  = 
0. (Contributed by Mario Carneiro, 22-Apr-2015.)
Assertion
Ref Expression
0ram  |-  ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e.  ran  F  y  <_  x )  ->  (
0 Ramsey  F )  =  sup ( ran  F ,  RR ,  <  ) )
Distinct variable groups:    x, y, R    x, F, y    x, V
Allowed substitution hint:    V( y)

Proof of Theorem 0ram
Dummy variables  b 
d  z  f  c  s  a  i are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2457 . . 3  |-  ( a  e.  _V ,  i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } )  =  ( a  e.  _V ,  i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } )
2 0nn0 10831 . . . 4  |-  0  e.  NN0
32a1i 11 . . 3  |-  ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e.  ran  F  y  <_  x )  ->  0  e.  NN0 )
4 simpl1 999 . . 3  |-  ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e.  ran  F  y  <_  x )  ->  R  e.  V )
5 simpl3 1001 . . 3  |-  ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e.  ran  F  y  <_  x )  ->  F : R --> NN0 )
6 frn 5743 . . . . 5  |-  ( F : R --> NN0  ->  ran 
F  C_  NN0 )
75, 6syl 16 . . . 4  |-  ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e.  ran  F  y  <_  x )  ->  ran  F 
C_  NN0 )
8 nn0ssz 10906 . . . . . 6  |-  NN0  C_  ZZ
97, 8syl6ss 3511 . . . . 5  |-  ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e.  ran  F  y  <_  x )  ->  ran  F 
C_  ZZ )
10 fdm 5741 . . . . . . . 8  |-  ( F : R --> NN0  ->  dom 
F  =  R )
115, 10syl 16 . . . . . . 7  |-  ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e.  ran  F  y  <_  x )  ->  dom  F  =  R )
12 simpl2 1000 . . . . . . 7  |-  ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e.  ran  F  y  <_  x )  ->  R  =/=  (/) )
1311, 12eqnetrd 2750 . . . . . 6  |-  ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e.  ran  F  y  <_  x )  ->  dom  F  =/=  (/) )
14 dm0rn0 5229 . . . . . . 7  |-  ( dom 
F  =  (/)  <->  ran  F  =  (/) )
1514necon3bii 2725 . . . . . 6  |-  ( dom 
F  =/=  (/)  <->  ran  F  =/=  (/) )
1613, 15sylib 196 . . . . 5  |-  ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e.  ran  F  y  <_  x )  ->  ran  F  =/=  (/) )
17 simpr 461 . . . . 5  |-  ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e.  ran  F  y  <_  x )  ->  E. x  e.  ZZ  A. y  e. 
ran  F  y  <_  x )
18 suprzcl2 11197 . . . . 5  |-  ( ( ran  F  C_  ZZ  /\ 
ran  F  =/=  (/)  /\  E. x  e.  ZZ  A. y  e.  ran  F  y  <_  x )  ->  sup ( ran  F ,  RR ,  <  )  e.  ran  F )
199, 16, 17, 18syl3anc 1228 . . . 4  |-  ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e.  ran  F  y  <_  x )  ->  sup ( ran  F ,  RR ,  <  )  e.  ran  F )
207, 19sseldd 3500 . . 3  |-  ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e.  ran  F  y  <_  x )  ->  sup ( ran  F ,  RR ,  <  )  e.  NN0 )
21 vex 3112 . . . . . . 7  |-  s  e. 
_V
221hashbc0 14535 . . . . . . 7  |-  ( s  e.  _V  ->  (
s ( a  e. 
_V ,  i  e. 
NN0  |->  { b  e. 
~P a  |  (
# `  b )  =  i } ) 0 )  =  { (/)
} )
2321, 22ax-mp 5 . . . . . 6  |-  ( s ( a  e.  _V ,  i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } ) 0 )  =  { (/) }
2423feq2i 5730 . . . . 5  |-  ( f : ( s ( a  e.  _V , 
i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } ) 0 ) --> R  <-> 
f : { (/) } --> R )
2524biimpi 194 . . . 4  |-  ( f : ( s ( a  e.  _V , 
i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } ) 0 ) --> R  ->  f : { (/)
} --> R )
26 simprr 757 . . . . . 6  |-  ( ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e. 
ran  F  y  <_  x )  /\  ( sup ( ran  F ,  RR ,  <  )  <_ 
( # `  s )  /\  f : { (/)
} --> R ) )  ->  f : { (/)
} --> R )
27 0ex 4587 . . . . . . 7  |-  (/)  e.  _V
2827snid 4060 . . . . . 6  |-  (/)  e.  { (/)
}
29 ffvelrn 6030 . . . . . 6  |-  ( ( f : { (/) } --> R  /\  (/)  e.  { (/)
} )  ->  (
f `  (/) )  e.  R )
3026, 28, 29sylancl 662 . . . . 5  |-  ( ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e. 
ran  F  y  <_  x )  /\  ( sup ( ran  F ,  RR ,  <  )  <_ 
( # `  s )  /\  f : { (/)
} --> R ) )  ->  ( f `  (/) )  e.  R )
3121pwid 4029 . . . . . 6  |-  s  e. 
~P s
3231a1i 11 . . . . 5  |-  ( ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e. 
ran  F  y  <_  x )  /\  ( sup ( ran  F ,  RR ,  <  )  <_ 
( # `  s )  /\  f : { (/)
} --> R ) )  ->  s  e.  ~P s )
335adantr 465 . . . . . . . . 9  |-  ( ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e. 
ran  F  y  <_  x )  /\  ( sup ( ran  F ,  RR ,  <  )  <_ 
( # `  s )  /\  f : { (/)
} --> R ) )  ->  F : R --> NN0 )
3433, 30ffvelrnd 6033 . . . . . . . 8  |-  ( ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e. 
ran  F  y  <_  x )  /\  ( sup ( ran  F ,  RR ,  <  )  <_ 
( # `  s )  /\  f : { (/)
} --> R ) )  ->  ( F `  ( f `  (/) ) )  e.  NN0 )
3534nn0red 10874 . . . . . . 7  |-  ( ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e. 
ran  F  y  <_  x )  /\  ( sup ( ran  F ,  RR ,  <  )  <_ 
( # `  s )  /\  f : { (/)
} --> R ) )  ->  ( F `  ( f `  (/) ) )  e.  RR )
3635rexrd 9660 . . . . . 6  |-  ( ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e. 
ran  F  y  <_  x )  /\  ( sup ( ran  F ,  RR ,  <  )  <_ 
( # `  s )  /\  f : { (/)
} --> R ) )  ->  ( F `  ( f `  (/) ) )  e.  RR* )
3720nn0red 10874 . . . . . . . 8  |-  ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e.  ran  F  y  <_  x )  ->  sup ( ran  F ,  RR ,  <  )  e.  RR )
3837rexrd 9660 . . . . . . 7  |-  ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e.  ran  F  y  <_  x )  ->  sup ( ran  F ,  RR ,  <  )  e.  RR* )
3938adantr 465 . . . . . 6  |-  ( ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e. 
ran  F  y  <_  x )  /\  ( sup ( ran  F ,  RR ,  <  )  <_ 
( # `  s )  /\  f : { (/)
} --> R ) )  ->  sup ( ran  F ,  RR ,  <  )  e.  RR* )
40 hashxrcl 12432 . . . . . . 7  |-  ( s  e.  _V  ->  ( # `
 s )  e. 
RR* )
4121, 40mp1i 12 . . . . . 6  |-  ( ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e. 
ran  F  y  <_  x )  /\  ( sup ( ran  F ,  RR ,  <  )  <_ 
( # `  s )  /\  f : { (/)
} --> R ) )  ->  ( # `  s
)  e.  RR* )
429adantr 465 . . . . . . 7  |-  ( ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e. 
ran  F  y  <_  x )  /\  ( sup ( ran  F ,  RR ,  <  )  <_ 
( # `  s )  /\  f : { (/)
} --> R ) )  ->  ran  F  C_  ZZ )
4317adantr 465 . . . . . . 7  |-  ( ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e. 
ran  F  y  <_  x )  /\  ( sup ( ran  F ,  RR ,  <  )  <_ 
( # `  s )  /\  f : { (/)
} --> R ) )  ->  E. x  e.  ZZ  A. y  e.  ran  F  y  <_  x )
44 ffn 5737 . . . . . . . . 9  |-  ( F : R --> NN0  ->  F  Fn  R )
4533, 44syl 16 . . . . . . . 8  |-  ( ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e. 
ran  F  y  <_  x )  /\  ( sup ( ran  F ,  RR ,  <  )  <_ 
( # `  s )  /\  f : { (/)
} --> R ) )  ->  F  Fn  R
)
46 fnfvelrn 6029 . . . . . . . 8  |-  ( ( F  Fn  R  /\  ( f `  (/) )  e.  R )  ->  ( F `  ( f `  (/) ) )  e. 
ran  F )
4745, 30, 46syl2anc 661 . . . . . . 7  |-  ( ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e. 
ran  F  y  <_  x )  /\  ( sup ( ran  F ,  RR ,  <  )  <_ 
( # `  s )  /\  f : { (/)
} --> R ) )  ->  ( F `  ( f `  (/) ) )  e.  ran  F )
48 suprzub 11198 . . . . . . 7  |-  ( ( ran  F  C_  ZZ  /\ 
E. x  e.  ZZ  A. y  e.  ran  F  y  <_  x  /\  ( F `  ( f `  (/) ) )  e. 
ran  F )  -> 
( F `  (
f `  (/) ) )  <_  sup ( ran  F ,  RR ,  <  )
)
4942, 43, 47, 48syl3anc 1228 . . . . . 6  |-  ( ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e. 
ran  F  y  <_  x )  /\  ( sup ( ran  F ,  RR ,  <  )  <_ 
( # `  s )  /\  f : { (/)
} --> R ) )  ->  ( F `  ( f `  (/) ) )  <_  sup ( ran  F ,  RR ,  <  )
)
50 simprl 756 . . . . . 6  |-  ( ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e. 
ran  F  y  <_  x )  /\  ( sup ( ran  F ,  RR ,  <  )  <_ 
( # `  s )  /\  f : { (/)
} --> R ) )  ->  sup ( ran  F ,  RR ,  <  )  <_  ( # `  s
) )
5136, 39, 41, 49, 50xrletrd 11390 . . . . 5  |-  ( ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e. 
ran  F  y  <_  x )  /\  ( sup ( ran  F ,  RR ,  <  )  <_ 
( # `  s )  /\  f : { (/)
} --> R ) )  ->  ( F `  ( f `  (/) ) )  <_  ( # `  s
) )
5228a1i 11 . . . . . 6  |-  ( ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e. 
ran  F  y  <_  x )  /\  ( sup ( ran  F ,  RR ,  <  )  <_ 
( # `  s )  /\  f : { (/)
} --> R ) )  ->  (/)  e.  { (/) } )
53 fvex 5882 . . . . . . . 8  |-  ( f `
 (/) )  e.  _V
5453snid 4060 . . . . . . 7  |-  ( f `
 (/) )  e.  {
( f `  (/) ) }
5554a1i 11 . . . . . 6  |-  ( ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e. 
ran  F  y  <_  x )  /\  ( sup ( ran  F ,  RR ,  <  )  <_ 
( # `  s )  /\  f : { (/)
} --> R ) )  ->  ( f `  (/) )  e.  { ( f `  (/) ) } )
56 ffn 5737 . . . . . . 7  |-  ( f : { (/) } --> R  -> 
f  Fn  { (/) } )
57 elpreima 6008 . . . . . . 7  |-  ( f  Fn  { (/) }  ->  (
(/)  e.  ( `' f " { ( f `
 (/) ) } )  <-> 
( (/)  e.  { (/) }  /\  ( f `  (/) )  e.  { ( f `  (/) ) } ) ) )
5826, 56, 573syl 20 . . . . . 6  |-  ( ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e. 
ran  F  y  <_  x )  /\  ( sup ( ran  F ,  RR ,  <  )  <_ 
( # `  s )  /\  f : { (/)
} --> R ) )  ->  ( (/)  e.  ( `' f " {
( f `  (/) ) } )  <->  ( (/)  e.  { (/)
}  /\  ( f `  (/) )  e.  {
( f `  (/) ) } ) ) )
5952, 55, 58mpbir2and 922 . . . . 5  |-  ( ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e. 
ran  F  y  <_  x )  /\  ( sup ( ran  F ,  RR ,  <  )  <_ 
( # `  s )  /\  f : { (/)
} --> R ) )  ->  (/)  e.  ( `' f " { ( f `  (/) ) } ) )
60 fveq2 5872 . . . . . . . 8  |-  ( c  =  ( f `  (/) )  ->  ( F `  c )  =  ( F `  ( f `
 (/) ) ) )
6160breq1d 4466 . . . . . . 7  |-  ( c  =  ( f `  (/) )  ->  ( ( F `  c )  <_  ( # `  z
)  <->  ( F `  ( f `  (/) ) )  <_  ( # `  z
) ) )
62 vex 3112 . . . . . . . . . . 11  |-  z  e. 
_V
631hashbc0 14535 . . . . . . . . . . 11  |-  ( z  e.  _V  ->  (
z ( a  e. 
_V ,  i  e. 
NN0  |->  { b  e. 
~P a  |  (
# `  b )  =  i } ) 0 )  =  { (/)
} )
6462, 63ax-mp 5 . . . . . . . . . 10  |-  ( z ( a  e.  _V ,  i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } ) 0 )  =  { (/) }
6564sseq1i 3523 . . . . . . . . 9  |-  ( ( z ( a  e. 
_V ,  i  e. 
NN0  |->  { b  e. 
~P a  |  (
# `  b )  =  i } ) 0 )  C_  ( `' f " {
c } )  <->  { (/) }  C_  ( `' f " {
c } ) )
6627snss 4156 . . . . . . . . 9  |-  ( (/)  e.  ( `' f " { c } )  <->  { (/) }  C_  ( `' f " {
c } ) )
6765, 66bitr4i 252 . . . . . . . 8  |-  ( ( z ( a  e. 
_V ,  i  e. 
NN0  |->  { b  e. 
~P a  |  (
# `  b )  =  i } ) 0 )  C_  ( `' f " {
c } )  <->  (/)  e.  ( `' f " {
c } ) )
68 sneq 4042 . . . . . . . . . 10  |-  ( c  =  ( f `  (/) )  ->  { c }  =  { (
f `  (/) ) } )
6968imaeq2d 5347 . . . . . . . . 9  |-  ( c  =  ( f `  (/) )  ->  ( `' f " { c } )  =  ( `' f " { ( f `  (/) ) } ) )
7069eleq2d 2527 . . . . . . . 8  |-  ( c  =  ( f `  (/) )  ->  ( (/)  e.  ( `' f " {
c } )  <->  (/)  e.  ( `' f " {
( f `  (/) ) } ) ) )
7167, 70syl5bb 257 . . . . . . 7  |-  ( c  =  ( f `  (/) )  ->  ( (
z ( a  e. 
_V ,  i  e. 
NN0  |->  { b  e. 
~P a  |  (
# `  b )  =  i } ) 0 )  C_  ( `' f " {
c } )  <->  (/)  e.  ( `' f " {
( f `  (/) ) } ) ) )
7261, 71anbi12d 710 . . . . . 6  |-  ( c  =  ( f `  (/) )  ->  ( (
( F `  c
)  <_  ( # `  z
)  /\  ( z
( a  e.  _V ,  i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } ) 0 )  C_  ( `' f " {
c } ) )  <-> 
( ( F `  ( f `  (/) ) )  <_  ( # `  z
)  /\  (/)  e.  ( `' f " {
( f `  (/) ) } ) ) ) )
73 fveq2 5872 . . . . . . . 8  |-  ( z  =  s  ->  ( # `
 z )  =  ( # `  s
) )
7473breq2d 4468 . . . . . . 7  |-  ( z  =  s  ->  (
( F `  (
f `  (/) ) )  <_  ( # `  z
)  <->  ( F `  ( f `  (/) ) )  <_  ( # `  s
) ) )
7574anbi1d 704 . . . . . 6  |-  ( z  =  s  ->  (
( ( F `  ( f `  (/) ) )  <_  ( # `  z
)  /\  (/)  e.  ( `' f " {
( f `  (/) ) } ) )  <->  ( ( F `  ( f `  (/) ) )  <_ 
( # `  s )  /\  (/)  e.  ( `' f " { ( f `  (/) ) } ) ) ) )
7672, 75rspc2ev 3221 . . . . 5  |-  ( ( ( f `  (/) )  e.  R  /\  s  e. 
~P s  /\  (
( F `  (
f `  (/) ) )  <_  ( # `  s
)  /\  (/)  e.  ( `' f " {
( f `  (/) ) } ) ) )  ->  E. c  e.  R  E. z  e.  ~P  s ( ( F `
 c )  <_ 
( # `  z )  /\  ( z ( a  e.  _V , 
i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } ) 0 )  C_  ( `' f " {
c } ) ) )
7730, 32, 51, 59, 76syl112anc 1232 . . . 4  |-  ( ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e. 
ran  F  y  <_  x )  /\  ( sup ( ran  F ,  RR ,  <  )  <_ 
( # `  s )  /\  f : { (/)
} --> R ) )  ->  E. c  e.  R  E. z  e.  ~P  s ( ( F `
 c )  <_ 
( # `  z )  /\  ( z ( a  e.  _V , 
i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } ) 0 )  C_  ( `' f " {
c } ) ) )
7825, 77sylanr2 653 . . 3  |-  ( ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e. 
ran  F  y  <_  x )  /\  ( sup ( ran  F ,  RR ,  <  )  <_ 
( # `  s )  /\  f : ( s ( a  e. 
_V ,  i  e. 
NN0  |->  { b  e. 
~P a  |  (
# `  b )  =  i } ) 0 ) --> R ) )  ->  E. c  e.  R  E. z  e.  ~P  s ( ( F `  c )  <_  ( # `  z
)  /\  ( z
( a  e.  _V ,  i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } ) 0 )  C_  ( `' f " {
c } ) ) )
791, 3, 4, 5, 20, 78ramub 14543 . 2  |-  ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e.  ran  F  y  <_  x )  ->  (
0 Ramsey  F )  <_  sup ( ran  F ,  RR ,  <  ) )
80 fvelrnb 5920 . . . . 5  |-  ( F  Fn  R  ->  ( sup ( ran  F ,  RR ,  <  )  e. 
ran  F  <->  E. c  e.  R  ( F `  c )  =  sup ( ran 
F ,  RR ,  <  ) ) )
815, 44, 803syl 20 . . . 4  |-  ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e.  ran  F  y  <_  x )  ->  ( sup ( ran  F ,  RR ,  <  )  e. 
ran  F  <->  E. c  e.  R  ( F `  c )  =  sup ( ran 
F ,  RR ,  <  ) ) )
8219, 81mpbid 210 . . 3  |-  ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e.  ran  F  y  <_  x )  ->  E. c  e.  R  ( F `  c )  =  sup ( ran  F ,  RR ,  <  ) )
832a1i 11 . . . . . . . . 9  |-  ( ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e. 
ran  F  y  <_  x )  /\  ( c  e.  R  /\  ( F `  c )  e.  NN ) )  -> 
0  e.  NN0 )
84 simpll1 1035 . . . . . . . . 9  |-  ( ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e. 
ran  F  y  <_  x )  /\  ( c  e.  R  /\  ( F `  c )  e.  NN ) )  ->  R  e.  V )
85 simpll3 1037 . . . . . . . . 9  |-  ( ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e. 
ran  F  y  <_  x )  /\  ( c  e.  R  /\  ( F `  c )  e.  NN ) )  ->  F : R --> NN0 )
86 nnm1nn0 10858 . . . . . . . . . 10  |-  ( ( F `  c )  e.  NN  ->  (
( F `  c
)  -  1 )  e.  NN0 )
8786ad2antll 728 . . . . . . . . 9  |-  ( ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e. 
ran  F  y  <_  x )  /\  ( c  e.  R  /\  ( F `  c )  e.  NN ) )  -> 
( ( F `  c )  -  1 )  e.  NN0 )
88 vex 3112 . . . . . . . . . . . . 13  |-  c  e. 
_V
8927, 88f1osn 5859 . . . . . . . . . . . 12  |-  { <. (/)
,  c >. } : { (/) } -1-1-onto-> { c }
90 f1of 5822 . . . . . . . . . . . 12  |-  ( {
<. (/) ,  c >. } : { (/) } -1-1-onto-> { c }  ->  {
<. (/) ,  c >. } : { (/) } --> { c } )
9189, 90ax-mp 5 . . . . . . . . . . 11  |-  { <. (/)
,  c >. } : { (/) } --> { c }
92 simprl 756 . . . . . . . . . . . 12  |-  ( ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e. 
ran  F  y  <_  x )  /\  ( c  e.  R  /\  ( F `  c )  e.  NN ) )  -> 
c  e.  R )
9392snssd 4177 . . . . . . . . . . 11  |-  ( ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e. 
ran  F  y  <_  x )  /\  ( c  e.  R  /\  ( F `  c )  e.  NN ) )  ->  { c }  C_  R )
94 fss 5745 . . . . . . . . . . 11  |-  ( ( { <. (/) ,  c >. } : { (/) } --> { c }  /\  { c }  C_  R )  ->  { <. (/) ,  c >. } : { (/) } --> R )
9591, 93, 94sylancr 663 . . . . . . . . . 10  |-  ( ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e. 
ran  F  y  <_  x )  /\  ( c  e.  R  /\  ( F `  c )  e.  NN ) )  ->  { <. (/) ,  c >. } : { (/) } --> R )
96 ovex 6324 . . . . . . . . . . . 12  |-  ( 1 ... ( ( F `
 c )  - 
1 ) )  e. 
_V
971hashbc0 14535 . . . . . . . . . . . 12  |-  ( ( 1 ... ( ( F `  c )  -  1 ) )  e.  _V  ->  (
( 1 ... (
( F `  c
)  -  1 ) ) ( a  e. 
_V ,  i  e. 
NN0  |->  { b  e. 
~P a  |  (
# `  b )  =  i } ) 0 )  =  { (/)
} )
9896, 97ax-mp 5 . . . . . . . . . . 11  |-  ( ( 1 ... ( ( F `  c )  -  1 ) ) ( a  e.  _V ,  i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } ) 0 )  =  { (/) }
9998feq2i 5730 . . . . . . . . . 10  |-  ( {
<. (/) ,  c >. } : ( ( 1 ... ( ( F `
 c )  - 
1 ) ) ( a  e.  _V , 
i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } ) 0 ) --> R  <->  { <. (/) ,  c >. } : { (/) } --> R )
10095, 99sylibr 212 . . . . . . . . 9  |-  ( ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e. 
ran  F  y  <_  x )  /\  ( c  e.  R  /\  ( F `  c )  e.  NN ) )  ->  { <. (/) ,  c >. } : ( ( 1 ... ( ( F `
 c )  - 
1 ) ) ( a  e.  _V , 
i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } ) 0 ) --> R )
10164sseq1i 3523 . . . . . . . . . . 11  |-  ( ( z ( a  e. 
_V ,  i  e. 
NN0  |->  { b  e. 
~P a  |  (
# `  b )  =  i } ) 0 )  C_  ( `' { <. (/) ,  c >. } " { d } )  <->  { (/) }  C_  ( `' { <. (/) ,  c >. } " { d } ) )
10227snss 4156 . . . . . . . . . . 11  |-  ( (/)  e.  ( `' { <. (/)
,  c >. } " { d } )  <->  { (/) }  C_  ( `' { <. (/) ,  c >. } " { d } ) )
103101, 102bitr4i 252 . . . . . . . . . 10  |-  ( ( z ( a  e. 
_V ,  i  e. 
NN0  |->  { b  e. 
~P a  |  (
# `  b )  =  i } ) 0 )  C_  ( `' { <. (/) ,  c >. } " { d } )  <->  (/)  e.  ( `' { <. (/) ,  c >. } " { d } ) )
104 fzfid 12086 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R
--> NN0 )  /\  E. x  e.  ZZ  A. y  e.  ran  F  y  <_  x )  /\  (
c  e.  R  /\  ( F `  c )  e.  NN ) )  /\  ( d  e.  R  /\  z  C_  ( 1 ... (
( F `  c
)  -  1 ) ) ) )  -> 
( 1 ... (
( F `  c
)  -  1 ) )  e.  Fin )
105 simprr 757 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R
--> NN0 )  /\  E. x  e.  ZZ  A. y  e.  ran  F  y  <_  x )  /\  (
c  e.  R  /\  ( F `  c )  e.  NN ) )  /\  ( d  e.  R  /\  z  C_  ( 1 ... (
( F `  c
)  -  1 ) ) ) )  -> 
z  C_  ( 1 ... ( ( F `
 c )  - 
1 ) ) )
106 ssdomg 7580 . . . . . . . . . . . . . . 15  |-  ( ( 1 ... ( ( F `  c )  -  1 ) )  e.  Fin  ->  (
z  C_  ( 1 ... ( ( F `
 c )  - 
1 ) )  -> 
z  ~<_  ( 1 ... ( ( F `  c )  -  1 ) ) ) )
107104, 105, 106sylc 60 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R
--> NN0 )  /\  E. x  e.  ZZ  A. y  e.  ran  F  y  <_  x )  /\  (
c  e.  R  /\  ( F `  c )  e.  NN ) )  /\  ( d  e.  R  /\  z  C_  ( 1 ... (
( F `  c
)  -  1 ) ) ) )  -> 
z  ~<_  ( 1 ... ( ( F `  c )  -  1 ) ) )
108 ssfi 7759 . . . . . . . . . . . . . . . 16  |-  ( ( ( 1 ... (
( F `  c
)  -  1 ) )  e.  Fin  /\  z  C_  ( 1 ... ( ( F `  c )  -  1 ) ) )  -> 
z  e.  Fin )
109104, 105, 108syl2anc 661 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R
--> NN0 )  /\  E. x  e.  ZZ  A. y  e.  ran  F  y  <_  x )  /\  (
c  e.  R  /\  ( F `  c )  e.  NN ) )  /\  ( d  e.  R  /\  z  C_  ( 1 ... (
( F `  c
)  -  1 ) ) ) )  -> 
z  e.  Fin )
110 hashdom 12450 . . . . . . . . . . . . . . 15  |-  ( ( z  e.  Fin  /\  ( 1 ... (
( F `  c
)  -  1 ) )  e.  Fin )  ->  ( ( # `  z
)  <_  ( # `  (
1 ... ( ( F `
 c )  - 
1 ) ) )  <-> 
z  ~<_  ( 1 ... ( ( F `  c )  -  1 ) ) ) )
111109, 104, 110syl2anc 661 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R
--> NN0 )  /\  E. x  e.  ZZ  A. y  e.  ran  F  y  <_  x )  /\  (
c  e.  R  /\  ( F `  c )  e.  NN ) )  /\  ( d  e.  R  /\  z  C_  ( 1 ... (
( F `  c
)  -  1 ) ) ) )  -> 
( ( # `  z
)  <_  ( # `  (
1 ... ( ( F `
 c )  - 
1 ) ) )  <-> 
z  ~<_  ( 1 ... ( ( F `  c )  -  1 ) ) ) )
112107, 111mpbird 232 . . . . . . . . . . . . 13  |-  ( ( ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R
--> NN0 )  /\  E. x  e.  ZZ  A. y  e.  ran  F  y  <_  x )  /\  (
c  e.  R  /\  ( F `  c )  e.  NN ) )  /\  ( d  e.  R  /\  z  C_  ( 1 ... (
( F `  c
)  -  1 ) ) ) )  -> 
( # `  z )  <_  ( # `  (
1 ... ( ( F `
 c )  - 
1 ) ) ) )
11387adantr 465 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R
--> NN0 )  /\  E. x  e.  ZZ  A. y  e.  ran  F  y  <_  x )  /\  (
c  e.  R  /\  ( F `  c )  e.  NN ) )  /\  ( d  e.  R  /\  z  C_  ( 1 ... (
( F `  c
)  -  1 ) ) ) )  -> 
( ( F `  c )  -  1 )  e.  NN0 )
114 hashfz1 12422 . . . . . . . . . . . . . 14  |-  ( ( ( F `  c
)  -  1 )  e.  NN0  ->  ( # `  ( 1 ... (
( F `  c
)  -  1 ) ) )  =  ( ( F `  c
)  -  1 ) )
115113, 114syl 16 . . . . . . . . . . . . 13  |-  ( ( ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R
--> NN0 )  /\  E. x  e.  ZZ  A. y  e.  ran  F  y  <_  x )  /\  (
c  e.  R  /\  ( F `  c )  e.  NN ) )  /\  ( d  e.  R  /\  z  C_  ( 1 ... (
( F `  c
)  -  1 ) ) ) )  -> 
( # `  ( 1 ... ( ( F `
 c )  - 
1 ) ) )  =  ( ( F `
 c )  - 
1 ) )
116112, 115breqtrd 4480 . . . . . . . . . . . 12  |-  ( ( ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R
--> NN0 )  /\  E. x  e.  ZZ  A. y  e.  ran  F  y  <_  x )  /\  (
c  e.  R  /\  ( F `  c )  e.  NN ) )  /\  ( d  e.  R  /\  z  C_  ( 1 ... (
( F `  c
)  -  1 ) ) ) )  -> 
( # `  z )  <_  ( ( F `
 c )  - 
1 ) )
117 hashcl 12431 . . . . . . . . . . . . . 14  |-  ( z  e.  Fin  ->  ( # `
 z )  e. 
NN0 )
118109, 117syl 16 . . . . . . . . . . . . 13  |-  ( ( ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R
--> NN0 )  /\  E. x  e.  ZZ  A. y  e.  ran  F  y  <_  x )  /\  (
c  e.  R  /\  ( F `  c )  e.  NN ) )  /\  ( d  e.  R  /\  z  C_  ( 1 ... (
( F `  c
)  -  1 ) ) ) )  -> 
( # `  z )  e.  NN0 )
1195ffvelrnda 6032 . . . . . . . . . . . . . . 15  |-  ( ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e. 
ran  F  y  <_  x )  /\  c  e.  R )  ->  ( F `  c )  e.  NN0 )
120119adantrr 716 . . . . . . . . . . . . . 14  |-  ( ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e. 
ran  F  y  <_  x )  /\  ( c  e.  R  /\  ( F `  c )  e.  NN ) )  -> 
( F `  c
)  e.  NN0 )
121120adantr 465 . . . . . . . . . . . . 13  |-  ( ( ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R
--> NN0 )  /\  E. x  e.  ZZ  A. y  e.  ran  F  y  <_  x )  /\  (
c  e.  R  /\  ( F `  c )  e.  NN ) )  /\  ( d  e.  R  /\  z  C_  ( 1 ... (
( F `  c
)  -  1 ) ) ) )  -> 
( F `  c
)  e.  NN0 )
122 nn0ltlem1 10944 . . . . . . . . . . . . 13  |-  ( ( ( # `  z
)  e.  NN0  /\  ( F `  c )  e.  NN0 )  -> 
( ( # `  z
)  <  ( F `  c )  <->  ( # `  z
)  <_  ( ( F `  c )  -  1 ) ) )
123118, 121, 122syl2anc 661 . . . . . . . . . . . 12  |-  ( ( ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R
--> NN0 )  /\  E. x  e.  ZZ  A. y  e.  ran  F  y  <_  x )  /\  (
c  e.  R  /\  ( F `  c )  e.  NN ) )  /\  ( d  e.  R  /\  z  C_  ( 1 ... (
( F `  c
)  -  1 ) ) ) )  -> 
( ( # `  z
)  <  ( F `  c )  <->  ( # `  z
)  <_  ( ( F `  c )  -  1 ) ) )
124116, 123mpbird 232 . . . . . . . . . . 11  |-  ( ( ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R
--> NN0 )  /\  E. x  e.  ZZ  A. y  e.  ran  F  y  <_  x )  /\  (
c  e.  R  /\  ( F `  c )  e.  NN ) )  /\  ( d  e.  R  /\  z  C_  ( 1 ... (
( F `  c
)  -  1 ) ) ) )  -> 
( # `  z )  <  ( F `  c ) )
12527, 88fvsn 6105 . . . . . . . . . . . . . . 15  |-  ( {
<. (/) ,  c >. } `  (/) )  =  c
126 f1ofn 5823 . . . . . . . . . . . . . . . . 17  |-  ( {
<. (/) ,  c >. } : { (/) } -1-1-onto-> { c }  ->  {
<. (/) ,  c >. }  Fn  { (/) } )
127 elpreima 6008 . . . . . . . . . . . . . . . . 17  |-  ( {
<. (/) ,  c >. }  Fn  { (/) }  ->  (
(/)  e.  ( `' { <. (/) ,  c >. } " { d } )  <->  ( (/)  e.  { (/)
}  /\  ( { <.
(/) ,  c >. } `
 (/) )  e.  {
d } ) ) )
12889, 126, 127mp2b 10 . . . . . . . . . . . . . . . 16  |-  ( (/)  e.  ( `' { <. (/)
,  c >. } " { d } )  <-> 
( (/)  e.  { (/) }  /\  ( { <. (/)
,  c >. } `  (/) )  e.  { d } ) )
129128simprbi 464 . . . . . . . . . . . . . . 15  |-  ( (/)  e.  ( `' { <. (/)
,  c >. } " { d } )  ->  ( { <. (/)
,  c >. } `  (/) )  e.  { d } )
130125, 129syl5eqelr 2550 . . . . . . . . . . . . . 14  |-  ( (/)  e.  ( `' { <. (/)
,  c >. } " { d } )  ->  c  e.  {
d } )
131 elsni 4057 . . . . . . . . . . . . . 14  |-  ( c  e.  { d }  ->  c  =  d )
132130, 131syl 16 . . . . . . . . . . . . 13  |-  ( (/)  e.  ( `' { <. (/)
,  c >. } " { d } )  ->  c  =  d )
133132fveq2d 5876 . . . . . . . . . . . 12  |-  ( (/)  e.  ( `' { <. (/)
,  c >. } " { d } )  ->  ( F `  c )  =  ( F `  d ) )
134133breq2d 4468 . . . . . . . . . . 11  |-  ( (/)  e.  ( `' { <. (/)
,  c >. } " { d } )  ->  ( ( # `  z )  <  ( F `  c )  <->  (
# `  z )  <  ( F `  d
) ) )
135124, 134syl5ibcom 220 . . . . . . . . . 10  |-  ( ( ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R
--> NN0 )  /\  E. x  e.  ZZ  A. y  e.  ran  F  y  <_  x )  /\  (
c  e.  R  /\  ( F `  c )  e.  NN ) )  /\  ( d  e.  R  /\  z  C_  ( 1 ... (
( F `  c
)  -  1 ) ) ) )  -> 
( (/)  e.  ( `' { <. (/) ,  c >. } " { d } )  ->  ( # `  z
)  <  ( F `  d ) ) )
136103, 135syl5bi 217 . . . . . . . . 9  |-  ( ( ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R
--> NN0 )  /\  E. x  e.  ZZ  A. y  e.  ran  F  y  <_  x )  /\  (
c  e.  R  /\  ( F `  c )  e.  NN ) )  /\  ( d  e.  R  /\  z  C_  ( 1 ... (
( F `  c
)  -  1 ) ) ) )  -> 
( ( z ( a  e.  _V , 
i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } ) 0 )  C_  ( `' { <. (/) ,  c >. } " { d } )  ->  ( # `  z
)  <  ( F `  d ) ) )
1371, 83, 84, 85, 87, 100, 136ramlb 14549 . . . . . . . 8  |-  ( ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e. 
ran  F  y  <_  x )  /\  ( c  e.  R  /\  ( F `  c )  e.  NN ) )  -> 
( ( F `  c )  -  1 )  <  ( 0 Ramsey  F ) )
138 ramubcl 14548 . . . . . . . . . . 11  |-  ( ( ( 0  e.  NN0  /\  R  e.  V  /\  F : R --> NN0 )  /\  ( sup ( ran 
F ,  RR ,  <  )  e.  NN0  /\  ( 0 Ramsey  F )  <_  sup ( ran  F ,  RR ,  <  ) ) )  ->  ( 0 Ramsey  F )  e.  NN0 )
1393, 4, 5, 20, 79, 138syl32anc 1236 . . . . . . . . . 10  |-  ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e.  ran  F  y  <_  x )  ->  (
0 Ramsey  F )  e.  NN0 )
140139adantr 465 . . . . . . . . 9  |-  ( ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e. 
ran  F  y  <_  x )  /\  ( c  e.  R  /\  ( F `  c )  e.  NN ) )  -> 
( 0 Ramsey  F )  e.  NN0 )
141 nn0lem1lt 10949 . . . . . . . . 9  |-  ( ( ( F `  c
)  e.  NN0  /\  ( 0 Ramsey  F )  e. 
NN0 )  ->  (
( F `  c
)  <_  ( 0 Ramsey  F )  <->  ( ( F `  c )  -  1 )  < 
( 0 Ramsey  F ) ) )
142120, 140, 141syl2anc 661 . . . . . . . 8  |-  ( ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e. 
ran  F  y  <_  x )  /\  ( c  e.  R  /\  ( F `  c )  e.  NN ) )  -> 
( ( F `  c )  <_  (
0 Ramsey  F )  <->  ( ( F `  c )  -  1 )  < 
( 0 Ramsey  F ) ) )
143137, 142mpbird 232 . . . . . . 7  |-  ( ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e. 
ran  F  y  <_  x )  /\  ( c  e.  R  /\  ( F `  c )  e.  NN ) )  -> 
( F `  c
)  <_  ( 0 Ramsey  F ) )
144143expr 615 . . . . . 6  |-  ( ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e. 
ran  F  y  <_  x )  /\  c  e.  R )  ->  (
( F `  c
)  e.  NN  ->  ( F `  c )  <_  ( 0 Ramsey  F
) ) )
145139adantr 465 . . . . . . . 8  |-  ( ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e. 
ran  F  y  <_  x )  /\  c  e.  R )  ->  (
0 Ramsey  F )  e.  NN0 )
146145nn0ge0d 10876 . . . . . . 7  |-  ( ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e. 
ran  F  y  <_  x )  /\  c  e.  R )  ->  0  <_  ( 0 Ramsey  F ) )
147 breq1 4459 . . . . . . 7  |-  ( ( F `  c )  =  0  ->  (
( F `  c
)  <_  ( 0 Ramsey  F )  <->  0  <_  ( 0 Ramsey  F ) ) )
148146, 147syl5ibrcom 222 . . . . . 6  |-  ( ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e. 
ran  F  y  <_  x )  /\  c  e.  R )  ->  (
( F `  c
)  =  0  -> 
( F `  c
)  <_  ( 0 Ramsey  F ) ) )
149 elnn0 10818 . . . . . . 7  |-  ( ( F `  c )  e.  NN0  <->  ( ( F `
 c )  e.  NN  \/  ( F `
 c )  =  0 ) )
150119, 149sylib 196 . . . . . 6  |-  ( ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e. 
ran  F  y  <_  x )  /\  c  e.  R )  ->  (
( F `  c
)  e.  NN  \/  ( F `  c )  =  0 ) )
151144, 148, 150mpjaod 381 . . . . 5  |-  ( ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e. 
ran  F  y  <_  x )  /\  c  e.  R )  ->  ( F `  c )  <_  ( 0 Ramsey  F ) )
152 breq1 4459 . . . . 5  |-  ( ( F `  c )  =  sup ( ran 
F ,  RR ,  <  )  ->  ( ( F `  c )  <_  ( 0 Ramsey  F )  <->  sup ( ran  F ,  RR ,  <  )  <_ 
( 0 Ramsey  F ) ) )
153151, 152syl5ibcom 220 . . . 4  |-  ( ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e. 
ran  F  y  <_  x )  /\  c  e.  R )  ->  (
( F `  c
)  =  sup ( ran  F ,  RR ,  <  )  ->  sup ( ran  F ,  RR ,  <  )  <_  ( 0 Ramsey  F ) ) )
154153rexlimdva 2949 . . 3  |-  ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e.  ran  F  y  <_  x )  ->  ( E. c  e.  R  ( F `  c )  =  sup ( ran 
F ,  RR ,  <  )  ->  sup ( ran  F ,  RR ,  <  )  <_  ( 0 Ramsey  F ) ) )
15582, 154mpd 15 . 2  |-  ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e.  ran  F  y  <_  x )  ->  sup ( ran  F ,  RR ,  <  )  <_  (
0 Ramsey  F ) )
156139nn0red 10874 . . 3  |-  ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e.  ran  F  y  <_  x )  ->  (
0 Ramsey  F )  e.  RR )
157156, 37letri3d 9744 . 2  |-  ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e.  ran  F  y  <_  x )  ->  (
( 0 Ramsey  F )  =  sup ( ran 
F ,  RR ,  <  )  <->  ( ( 0 Ramsey  F )  <_  sup ( ran  F ,  RR ,  <  )  /\  sup ( ran  F ,  RR ,  <  )  <_  (
0 Ramsey  F ) ) ) )
15879, 155, 157mpbir2and 922 1  |-  ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e.  ran  F  y  <_  x )  ->  (
0 Ramsey  F )  =  sup ( ran  F ,  RR ,  <  ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    /\ w3a 973    = wceq 1395    e. wcel 1819    =/= wne 2652   A.wral 2807   E.wrex 2808   {crab 2811   _Vcvv 3109    C_ wss 3471   (/)c0 3793   ~Pcpw 4015   {csn 4032   <.cop 4038   class class class wbr 4456   `'ccnv 5007   dom cdm 5008   ran crn 5009   "cima 5011    Fn wfn 5589   -->wf 5590   -1-1-onto->wf1o 5593   ` cfv 5594  (class class class)co 6296    |-> cmpt2 6298    ~<_ cdom 7533   Fincfn 7535   supcsup 7918   RRcr 9508   0cc0 9509   1c1 9510   RR*cxr 9644    < clt 9645    <_ cle 9646    - cmin 9824   NNcn 10556   NN0cn0 10816   ZZcz 10885   ...cfz 11697   #chash 12408   Ramsey cram 14529
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-rep 4568  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591  ax-cnex 9565  ax-resscn 9566  ax-1cn 9567  ax-icn 9568  ax-addcl 9569  ax-addrcl 9570  ax-mulcl 9571  ax-mulrcl 9572  ax-mulcom 9573  ax-addass 9574  ax-mulass 9575  ax-distr 9576  ax-i2m1 9577  ax-1ne0 9578  ax-1rid 9579  ax-rnegex 9580  ax-rrecex 9581  ax-cnre 9582  ax-pre-lttri 9583  ax-pre-lttrn 9584  ax-pre-ltadd 9585  ax-pre-mulgt0 9586
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-nel 2655  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4252  df-int 4289  df-iun 4334  df-br 4457  df-opab 4516  df-mpt 4517  df-tr 4551  df-eprel 4800  df-id 4804  df-po 4809  df-so 4810  df-fr 4847  df-we 4849  df-ord 4890  df-on 4891  df-lim 4892  df-suc 4893  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6258  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-om 6700  df-1st 6799  df-2nd 6800  df-recs 7060  df-rdg 7094  df-1o 7148  df-oadd 7152  df-er 7329  df-map 7440  df-en 7536  df-dom 7537  df-sdom 7538  df-fin 7539  df-sup 7919  df-card 8337  df-pnf 9647  df-mnf 9648  df-xr 9649  df-ltxr 9650  df-le 9651  df-sub 9826  df-neg 9827  df-nn 10557  df-n0 10817  df-z 10886  df-uz 11107  df-fz 11698  df-hash 12409  df-ram 14531
This theorem is referenced by:  0ram2  14551  ramz  14555
  Copyright terms: Public domain W3C validator