MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0pthon Structured version   Unicode version

Theorem 0pthon 24998
Description: A path of length 0 from a vertex to itself. (Contributed by Alexander van der Vekens, 3-Dec-2017.)
Assertion
Ref Expression
0pthon  |-  ( ( ( V  e.  X  /\  E  e.  Y
)  /\  N  e.  V )  ->  (
( P : ( 0 ... 0 ) --> V  /\  ( P `
 0 )  =  N )  ->  (/) ( N ( V PathOn  E ) N ) P ) )

Proof of Theorem 0pthon
StepHypRef Expression
1 0wlkon 24966 . . . . 5  |-  ( ( ( V  e.  X  /\  E  e.  Y
)  /\  N  e.  V )  ->  (
( P : ( 0 ... 0 ) --> V  /\  ( P `
 0 )  =  N )  ->  (/) ( N ( V WalkOn  E ) N ) P ) )
21imp 427 . . . 4  |-  ( ( ( ( V  e.  X  /\  E  e.  Y )  /\  N  e.  V )  /\  ( P : ( 0 ... 0 ) --> V  /\  ( P `  0 )  =  N ) )  ->  (/) ( N ( V WalkOn  E ) N ) P )
3 simprl 756 . . . . 5  |-  ( ( ( ( V  e.  X  /\  E  e.  Y )  /\  N  e.  V )  /\  ( P : ( 0 ... 0 ) --> V  /\  ( P `  0 )  =  N ) )  ->  P : ( 0 ... 0 ) --> V )
4 simpll 752 . . . . . 6  |-  ( ( ( ( V  e.  X  /\  E  e.  Y )  /\  N  e.  V )  /\  ( P : ( 0 ... 0 ) --> V  /\  ( P `  0 )  =  N ) )  ->  ( V  e.  X  /\  E  e.  Y ) )
5 fzfid 12124 . . . . . . 7  |-  ( ( ( ( V  e.  X  /\  E  e.  Y )  /\  N  e.  V )  /\  ( P : ( 0 ... 0 ) --> V  /\  ( P `  0 )  =  N ) )  ->  ( 0 ... 0 )  e.  Fin )
6 simplll 760 . . . . . . 7  |-  ( ( ( ( V  e.  X  /\  E  e.  Y )  /\  N  e.  V )  /\  ( P : ( 0 ... 0 ) --> V  /\  ( P `  0 )  =  N ) )  ->  V  e.  X
)
7 fpmg 7482 . . . . . . 7  |-  ( ( ( 0 ... 0
)  e.  Fin  /\  V  e.  X  /\  P : ( 0 ... 0 ) --> V )  ->  P  e.  ( V  ^pm  ( 0 ... 0 ) ) )
85, 6, 3, 7syl3anc 1230 . . . . . 6  |-  ( ( ( ( V  e.  X  /\  E  e.  Y )  /\  N  e.  V )  /\  ( P : ( 0 ... 0 ) --> V  /\  ( P `  0 )  =  N ) )  ->  P  e.  ( V  ^pm  ( 0 ... 0 ) ) )
9 0pth 24989 . . . . . 6  |-  ( ( ( V  e.  X  /\  E  e.  Y
)  /\  P  e.  ( V  ^pm  ( 0 ... 0 ) ) )  ->  ( (/) ( V Paths 
E ) P  <->  P :
( 0 ... 0
) --> V ) )
104, 8, 9syl2anc 659 . . . . 5  |-  ( ( ( ( V  e.  X  /\  E  e.  Y )  /\  N  e.  V )  /\  ( P : ( 0 ... 0 ) --> V  /\  ( P `  0 )  =  N ) )  ->  ( (/) ( V Paths 
E ) P  <->  P :
( 0 ... 0
) --> V ) )
113, 10mpbird 232 . . . 4  |-  ( ( ( ( V  e.  X  /\  E  e.  Y )  /\  N  e.  V )  /\  ( P : ( 0 ... 0 ) --> V  /\  ( P `  0 )  =  N ) )  ->  (/) ( V Paths  E
) P )
122, 11jca 530 . . 3  |-  ( ( ( ( V  e.  X  /\  E  e.  Y )  /\  N  e.  V )  /\  ( P : ( 0 ... 0 ) --> V  /\  ( P `  0 )  =  N ) )  ->  ( (/) ( N ( V WalkOn  E ) N ) P  /\  (/) ( V Paths  E ) P ) )
13 0ex 4526 . . . . 5  |-  (/)  e.  _V
1413a1i 11 . . . 4  |-  ( ( ( ( V  e.  X  /\  E  e.  Y )  /\  N  e.  V )  /\  ( P : ( 0 ... 0 ) --> V  /\  ( P `  0 )  =  N ) )  ->  (/)  e.  _V )
15 simpr 459 . . . . . 6  |-  ( ( ( V  e.  X  /\  E  e.  Y
)  /\  N  e.  V )  ->  N  e.  V )
1615, 15jca 530 . . . . 5  |-  ( ( ( V  e.  X  /\  E  e.  Y
)  /\  N  e.  V )  ->  ( N  e.  V  /\  N  e.  V )
)
1716adantr 463 . . . 4  |-  ( ( ( ( V  e.  X  /\  E  e.  Y )  /\  N  e.  V )  /\  ( P : ( 0 ... 0 ) --> V  /\  ( P `  0 )  =  N ) )  ->  ( N  e.  V  /\  N  e.  V ) )
18 ispthon 24995 . . . 4  |-  ( ( ( V  e.  X  /\  E  e.  Y
)  /\  ( (/)  e.  _V  /\  P  e.  ( V 
^pm  ( 0 ... 0 ) ) )  /\  ( N  e.  V  /\  N  e.  V ) )  -> 
( (/) ( N ( V PathOn  E ) N ) P  <->  ( (/) ( N ( V WalkOn  E ) N ) P  /\  (/) ( V Paths  E ) P ) ) )
194, 14, 8, 17, 18syl121anc 1235 . . 3  |-  ( ( ( ( V  e.  X  /\  E  e.  Y )  /\  N  e.  V )  /\  ( P : ( 0 ... 0 ) --> V  /\  ( P `  0 )  =  N ) )  ->  ( (/) ( N ( V PathOn  E ) N ) P  <->  ( (/) ( N ( V WalkOn  E ) N ) P  /\  (/) ( V Paths  E ) P ) ) )
2012, 19mpbird 232 . 2  |-  ( ( ( ( V  e.  X  /\  E  e.  Y )  /\  N  e.  V )  /\  ( P : ( 0 ... 0 ) --> V  /\  ( P `  0 )  =  N ) )  ->  (/) ( N ( V PathOn  E ) N ) P )
2120ex 432 1  |-  ( ( ( V  e.  X  /\  E  e.  Y
)  /\  N  e.  V )  ->  (
( P : ( 0 ... 0 ) --> V  /\  ( P `
 0 )  =  N )  ->  (/) ( N ( V PathOn  E ) N ) P ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367    = wceq 1405    e. wcel 1842   _Vcvv 3059   (/)c0 3738   class class class wbr 4395   -->wf 5565   ` cfv 5569  (class class class)co 6278    ^pm cpm 7458   Fincfn 7554   0cc0 9522   ...cfz 11726   Paths cpath 24917   WalkOn cwlkon 24919   PathOn cpthon 24921
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-rep 4507  ax-sep 4517  ax-nul 4525  ax-pow 4572  ax-pr 4630  ax-un 6574  ax-cnex 9578  ax-resscn 9579  ax-1cn 9580  ax-icn 9581  ax-addcl 9582  ax-addrcl 9583  ax-mulcl 9584  ax-mulrcl 9585  ax-mulcom 9586  ax-addass 9587  ax-mulass 9588  ax-distr 9589  ax-i2m1 9590  ax-1ne0 9591  ax-1rid 9592  ax-rnegex 9593  ax-rrecex 9594  ax-cnre 9595  ax-pre-lttri 9596  ax-pre-lttrn 9597  ax-pre-ltadd 9598  ax-pre-mulgt0 9599
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 975  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-nel 2601  df-ral 2759  df-rex 2760  df-reu 2761  df-rmo 2762  df-rab 2763  df-v 3061  df-sbc 3278  df-csb 3374  df-dif 3417  df-un 3419  df-in 3421  df-ss 3428  df-pss 3430  df-nul 3739  df-if 3886  df-pw 3957  df-sn 3973  df-pr 3975  df-tp 3977  df-op 3979  df-uni 4192  df-int 4228  df-iun 4273  df-br 4396  df-opab 4454  df-mpt 4455  df-tr 4490  df-eprel 4734  df-id 4738  df-po 4744  df-so 4745  df-fr 4782  df-we 4784  df-xp 4829  df-rel 4830  df-cnv 4831  df-co 4832  df-dm 4833  df-rn 4834  df-res 4835  df-ima 4836  df-pred 5367  df-ord 5413  df-on 5414  df-lim 5415  df-suc 5416  df-iota 5533  df-fun 5571  df-fn 5572  df-f 5573  df-f1 5574  df-fo 5575  df-f1o 5576  df-fv 5577  df-riota 6240  df-ov 6281  df-oprab 6282  df-mpt2 6283  df-om 6684  df-1st 6784  df-2nd 6785  df-wrecs 7013  df-recs 7075  df-rdg 7113  df-1o 7167  df-oadd 7171  df-er 7348  df-map 7459  df-pm 7460  df-en 7555  df-dom 7556  df-sdom 7557  df-fin 7558  df-card 8352  df-cda 8580  df-pnf 9660  df-mnf 9661  df-xr 9662  df-ltxr 9663  df-le 9664  df-sub 9843  df-neg 9844  df-nn 10577  df-2 10635  df-n0 10837  df-z 10906  df-uz 11128  df-fz 11727  df-fzo 11855  df-hash 12453  df-word 12591  df-wlk 24925  df-trail 24926  df-pth 24927  df-wlkon 24931  df-pthon 24933
This theorem is referenced by:  0pthon1  24999
  Copyright terms: Public domain W3C validator