MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0pth Structured version   Unicode version

Theorem 0pth 24276
Description: A pair of an empty set (of edges) and a second set (of vertices) is a path if and only if the second set contains exactly one vertex (in an undirected graph). (Contributed by Alexander van der Vekens, 30-Oct-2017.)
Assertion
Ref Expression
0pth  |-  ( ( ( V  e.  X  /\  E  e.  Y
)  /\  P  e.  Z )  ->  ( (/) ( V Paths  E ) P  <->  P : ( 0 ... 0 ) --> V ) )

Proof of Theorem 0pth
StepHypRef Expression
1 0ex 4577 . . 3  |-  (/)  e.  _V
2 ispth 24274 . . 3  |-  ( ( ( V  e.  X  /\  E  e.  Y
)  /\  ( (/)  e.  _V  /\  P  e.  Z ) )  ->  ( (/) ( V Paths 
E ) P  <->  ( (/) ( V Trails  E ) P  /\  Fun  `' ( P  |`  ( 1..^ ( # `  (/) ) ) )  /\  ( ( P " { 0 ,  ( # `  (/) ) } )  i^i  ( P
" ( 1..^ (
# `  (/) ) ) ) )  =  (/) ) ) )
31, 2mpanr1 683 . 2  |-  ( ( ( V  e.  X  /\  E  e.  Y
)  /\  P  e.  Z )  ->  ( (/) ( V Paths  E ) P  <->  ( (/) ( V Trails  E ) P  /\  Fun  `' ( P  |`  ( 1..^ ( # `  (/) ) ) )  /\  ( ( P " { 0 ,  ( # `  (/) ) } )  i^i  ( P
" ( 1..^ (
# `  (/) ) ) ) )  =  (/) ) ) )
4 3anass 977 . . . 4  |-  ( (
(/) ( V Trails  E
) P  /\  Fun  `' ( P  |`  (
1..^ ( # `  (/) ) ) )  /\  ( ( P " { 0 ,  ( # `  (/) ) } )  i^i  ( P
" ( 1..^ (
# `  (/) ) ) ) )  =  (/) ) 
<->  ( (/) ( V Trails  E
) P  /\  ( Fun  `' ( P  |`  ( 1..^ ( # `  (/) ) ) )  /\  ( ( P " { 0 ,  ( # `  (/) ) } )  i^i  ( P
" ( 1..^ (
# `  (/) ) ) ) )  =  (/) ) ) )
54a1i 11 . . 3  |-  ( ( ( V  e.  X  /\  E  e.  Y
)  /\  P  e.  Z )  ->  (
( (/) ( V Trails  E
) P  /\  Fun  `' ( P  |`  (
1..^ ( # `  (/) ) ) )  /\  ( ( P " { 0 ,  ( # `  (/) ) } )  i^i  ( P
" ( 1..^ (
# `  (/) ) ) ) )  =  (/) ) 
<->  ( (/) ( V Trails  E
) P  /\  ( Fun  `' ( P  |`  ( 1..^ ( # `  (/) ) ) )  /\  ( ( P " { 0 ,  ( # `  (/) ) } )  i^i  ( P
" ( 1..^ (
# `  (/) ) ) ) )  =  (/) ) ) ) )
6 fun0 5645 . . . . . . 7  |-  Fun  (/)
7 cnv0 5409 . . . . . . . 8  |-  `' (/)  =  (/)
87funeqi 5608 . . . . . . 7  |-  ( Fun  `' (/)  <->  Fun  (/) )
96, 8mpbir 209 . . . . . 6  |-  Fun  `' (/)
10 hash0 12405 . . . . . . . . . . . 12  |-  ( # `  (/) )  =  0
11 0le1 10076 . . . . . . . . . . . 12  |-  0  <_  1
1210, 11eqbrtri 4466 . . . . . . . . . . 11  |-  ( # `  (/) )  <_  1
13 1z 10894 . . . . . . . . . . . 12  |-  1  e.  ZZ
14 0z 10875 . . . . . . . . . . . . 13  |-  0  e.  ZZ
1510, 14eqeltri 2551 . . . . . . . . . . . 12  |-  ( # `  (/) )  e.  ZZ
16 fzon 11815 . . . . . . . . . . . 12  |-  ( ( 1  e.  ZZ  /\  ( # `  (/) )  e.  ZZ )  ->  (
( # `  (/) )  <_ 
1  <->  ( 1..^ (
# `  (/) ) )  =  (/) ) )
1713, 15, 16mp2an 672 . . . . . . . . . . 11  |-  ( (
# `  (/) )  <_ 
1  <->  ( 1..^ (
# `  (/) ) )  =  (/) )
1812, 17mpbi 208 . . . . . . . . . 10  |-  ( 1..^ ( # `  (/) ) )  =  (/)
1918reseq2i 5270 . . . . . . . . 9  |-  ( P  |`  ( 1..^ ( # `  (/) ) ) )  =  ( P  |`  (/) )
20 res0 5278 . . . . . . . . 9  |-  ( P  |`  (/) )  =  (/)
2119, 20eqtri 2496 . . . . . . . 8  |-  ( P  |`  ( 1..^ ( # `  (/) ) ) )  =  (/)
2221cnveqi 5177 . . . . . . 7  |-  `' ( P  |`  ( 1..^ ( # `  (/) ) ) )  =  `' (/)
2322funeqi 5608 . . . . . 6  |-  ( Fun  `' ( P  |`  ( 1..^ ( # `  (/) ) ) )  <->  Fun  `' (/) )
249, 23mpbir 209 . . . . 5  |-  Fun  `' ( P  |`  ( 1..^ ( # `  (/) ) ) )
2518imaeq2i 5335 . . . . . . . 8  |-  ( P
" ( 1..^ (
# `  (/) ) ) )  =  ( P
" (/) )
26 ima0 5352 . . . . . . . 8  |-  ( P
" (/) )  =  (/)
2725, 26eqtri 2496 . . . . . . 7  |-  ( P
" ( 1..^ (
# `  (/) ) ) )  =  (/)
2827ineq2i 3697 . . . . . 6  |-  ( ( P " { 0 ,  ( # `  (/) ) } )  i^i  ( P
" ( 1..^ (
# `  (/) ) ) ) )  =  ( ( P " {
0 ,  ( # `  (/) ) } )  i^i  (/) )
29 in0 3811 . . . . . 6  |-  ( ( P " { 0 ,  ( # `  (/) ) } )  i^i  (/) )  =  (/)
3028, 29eqtri 2496 . . . . 5  |-  ( ( P " { 0 ,  ( # `  (/) ) } )  i^i  ( P
" ( 1..^ (
# `  (/) ) ) ) )  =  (/)
3124, 30pm3.2i 455 . . . 4  |-  ( Fun  `' ( P  |`  ( 1..^ ( # `  (/) ) ) )  /\  ( ( P " { 0 ,  ( # `  (/) ) } )  i^i  ( P
" ( 1..^ (
# `  (/) ) ) ) )  =  (/) )
3231biantru 505 . . 3  |-  ( (/) ( V Trails  E ) P  <-> 
( (/) ( V Trails  E
) P  /\  ( Fun  `' ( P  |`  ( 1..^ ( # `  (/) ) ) )  /\  ( ( P " { 0 ,  ( # `  (/) ) } )  i^i  ( P
" ( 1..^ (
# `  (/) ) ) ) )  =  (/) ) ) )
335, 32syl6bbr 263 . 2  |-  ( ( ( V  e.  X  /\  E  e.  Y
)  /\  P  e.  Z )  ->  (
( (/) ( V Trails  E
) P  /\  Fun  `' ( P  |`  (
1..^ ( # `  (/) ) ) )  /\  ( ( P " { 0 ,  ( # `  (/) ) } )  i^i  ( P
" ( 1..^ (
# `  (/) ) ) ) )  =  (/) ) 
<->  (/) ( V Trails  E ) P ) )
34 0trl 24252 . 2  |-  ( ( ( V  e.  X  /\  E  e.  Y
)  /\  P  e.  Z )  ->  ( (/) ( V Trails  E ) P  <->  P : ( 0 ... 0 ) --> V ) )
353, 33, 343bitrd 279 1  |-  ( ( ( V  e.  X  /\  E  e.  Y
)  /\  P  e.  Z )  ->  ( (/) ( V Paths  E ) P  <->  P : ( 0 ... 0 ) --> V ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767   _Vcvv 3113    i^i cin 3475   (/)c0 3785   {cpr 4029   class class class wbr 4447   `'ccnv 4998    |` cres 5001   "cima 5002   Fun wfun 5582   -->wf 5584   ` cfv 5588  (class class class)co 6284   0cc0 9492   1c1 9493    <_ cle 9629   ZZcz 10864   ...cfz 11672  ..^cfzo 11792   #chash 12373   Trails ctrail 24203   Paths cpath 24204
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6576  ax-cnex 9548  ax-resscn 9549  ax-1cn 9550  ax-icn 9551  ax-addcl 9552  ax-addrcl 9553  ax-mulcl 9554  ax-mulrcl 9555  ax-mulcom 9556  ax-addass 9557  ax-mulass 9558  ax-distr 9559  ax-i2m1 9560  ax-1ne0 9561  ax-1rid 9562  ax-rnegex 9563  ax-rrecex 9564  ax-cnre 9565  ax-pre-lttri 9566  ax-pre-lttrn 9567  ax-pre-ltadd 9568  ax-pre-mulgt0 9569
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-riota 6245  df-ov 6287  df-oprab 6288  df-mpt2 6289  df-om 6685  df-1st 6784  df-2nd 6785  df-recs 7042  df-rdg 7076  df-1o 7130  df-oadd 7134  df-er 7311  df-map 7422  df-pm 7423  df-en 7517  df-dom 7518  df-sdom 7519  df-fin 7520  df-card 8320  df-pnf 9630  df-mnf 9631  df-xr 9632  df-ltxr 9633  df-le 9634  df-sub 9807  df-neg 9808  df-nn 10537  df-n0 10796  df-z 10865  df-uz 11083  df-fz 11673  df-fzo 11793  df-hash 12374  df-word 12508  df-wlk 24212  df-trail 24213  df-pth 24214
This theorem is referenced by:  0pthon  24285  0cycl  24331
  Copyright terms: Public domain W3C validator