MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0pth Structured version   Unicode version

Theorem 0pth 23620
Description: A pair of an empty set (of edges) and a second set (of vertices) is a path if and only if the second set contains exactly one vertex (in an undirected graph). (Contributed by Alexander van der Vekens, 30-Oct-2017.)
Assertion
Ref Expression
0pth  |-  ( ( ( V  e.  X  /\  E  e.  Y
)  /\  P  e.  Z )  ->  ( (/) ( V Paths  E ) P  <->  P : ( 0 ... 0 ) --> V ) )

Proof of Theorem 0pth
StepHypRef Expression
1 0ex 4529 . . 3  |-  (/)  e.  _V
2 ispth 23618 . . 3  |-  ( ( ( V  e.  X  /\  E  e.  Y
)  /\  ( (/)  e.  _V  /\  P  e.  Z ) )  ->  ( (/) ( V Paths 
E ) P  <->  ( (/) ( V Trails  E ) P  /\  Fun  `' ( P  |`  ( 1..^ ( # `  (/) ) ) )  /\  ( ( P " { 0 ,  ( # `  (/) ) } )  i^i  ( P
" ( 1..^ (
# `  (/) ) ) ) )  =  (/) ) ) )
31, 2mpanr1 683 . 2  |-  ( ( ( V  e.  X  /\  E  e.  Y
)  /\  P  e.  Z )  ->  ( (/) ( V Paths  E ) P  <->  ( (/) ( V Trails  E ) P  /\  Fun  `' ( P  |`  ( 1..^ ( # `  (/) ) ) )  /\  ( ( P " { 0 ,  ( # `  (/) ) } )  i^i  ( P
" ( 1..^ (
# `  (/) ) ) ) )  =  (/) ) ) )
4 3anass 969 . . . 4  |-  ( (
(/) ( V Trails  E
) P  /\  Fun  `' ( P  |`  (
1..^ ( # `  (/) ) ) )  /\  ( ( P " { 0 ,  ( # `  (/) ) } )  i^i  ( P
" ( 1..^ (
# `  (/) ) ) ) )  =  (/) ) 
<->  ( (/) ( V Trails  E
) P  /\  ( Fun  `' ( P  |`  ( 1..^ ( # `  (/) ) ) )  /\  ( ( P " { 0 ,  ( # `  (/) ) } )  i^i  ( P
" ( 1..^ (
# `  (/) ) ) ) )  =  (/) ) ) )
54a1i 11 . . 3  |-  ( ( ( V  e.  X  /\  E  e.  Y
)  /\  P  e.  Z )  ->  (
( (/) ( V Trails  E
) P  /\  Fun  `' ( P  |`  (
1..^ ( # `  (/) ) ) )  /\  ( ( P " { 0 ,  ( # `  (/) ) } )  i^i  ( P
" ( 1..^ (
# `  (/) ) ) ) )  =  (/) ) 
<->  ( (/) ( V Trails  E
) P  /\  ( Fun  `' ( P  |`  ( 1..^ ( # `  (/) ) ) )  /\  ( ( P " { 0 ,  ( # `  (/) ) } )  i^i  ( P
" ( 1..^ (
# `  (/) ) ) ) )  =  (/) ) ) ) )
6 fun0 5582 . . . . . . 7  |-  Fun  (/)
7 cnv0 5347 . . . . . . . 8  |-  `' (/)  =  (/)
87funeqi 5545 . . . . . . 7  |-  ( Fun  `' (/)  <->  Fun  (/) )
96, 8mpbir 209 . . . . . 6  |-  Fun  `' (/)
10 hash0 12251 . . . . . . . . . . . 12  |-  ( # `  (/) )  =  0
11 0le1 9973 . . . . . . . . . . . 12  |-  0  <_  1
1210, 11eqbrtri 4418 . . . . . . . . . . 11  |-  ( # `  (/) )  <_  1
13 1z 10786 . . . . . . . . . . . 12  |-  1  e.  ZZ
14 0z 10767 . . . . . . . . . . . . 13  |-  0  e.  ZZ
1510, 14eqeltri 2538 . . . . . . . . . . . 12  |-  ( # `  (/) )  e.  ZZ
16 fzon 11687 . . . . . . . . . . . 12  |-  ( ( 1  e.  ZZ  /\  ( # `  (/) )  e.  ZZ )  ->  (
( # `  (/) )  <_ 
1  <->  ( 1..^ (
# `  (/) ) )  =  (/) ) )
1713, 15, 16mp2an 672 . . . . . . . . . . 11  |-  ( (
# `  (/) )  <_ 
1  <->  ( 1..^ (
# `  (/) ) )  =  (/) )
1812, 17mpbi 208 . . . . . . . . . 10  |-  ( 1..^ ( # `  (/) ) )  =  (/)
1918reseq2i 5214 . . . . . . . . 9  |-  ( P  |`  ( 1..^ ( # `  (/) ) ) )  =  ( P  |`  (/) )
20 res0 5222 . . . . . . . . 9  |-  ( P  |`  (/) )  =  (/)
2119, 20eqtri 2483 . . . . . . . 8  |-  ( P  |`  ( 1..^ ( # `  (/) ) ) )  =  (/)
2221cnveqi 5121 . . . . . . 7  |-  `' ( P  |`  ( 1..^ ( # `  (/) ) ) )  =  `' (/)
2322funeqi 5545 . . . . . 6  |-  ( Fun  `' ( P  |`  ( 1..^ ( # `  (/) ) ) )  <->  Fun  `' (/) )
249, 23mpbir 209 . . . . 5  |-  Fun  `' ( P  |`  ( 1..^ ( # `  (/) ) ) )
2518imaeq2i 5274 . . . . . . . 8  |-  ( P
" ( 1..^ (
# `  (/) ) ) )  =  ( P
" (/) )
26 ima0 5291 . . . . . . . 8  |-  ( P
" (/) )  =  (/)
2725, 26eqtri 2483 . . . . . . 7  |-  ( P
" ( 1..^ (
# `  (/) ) ) )  =  (/)
2827ineq2i 3656 . . . . . 6  |-  ( ( P " { 0 ,  ( # `  (/) ) } )  i^i  ( P
" ( 1..^ (
# `  (/) ) ) ) )  =  ( ( P " {
0 ,  ( # `  (/) ) } )  i^i  (/) )
29 in0 3770 . . . . . 6  |-  ( ( P " { 0 ,  ( # `  (/) ) } )  i^i  (/) )  =  (/)
3028, 29eqtri 2483 . . . . 5  |-  ( ( P " { 0 ,  ( # `  (/) ) } )  i^i  ( P
" ( 1..^ (
# `  (/) ) ) ) )  =  (/)
3124, 30pm3.2i 455 . . . 4  |-  ( Fun  `' ( P  |`  ( 1..^ ( # `  (/) ) ) )  /\  ( ( P " { 0 ,  ( # `  (/) ) } )  i^i  ( P
" ( 1..^ (
# `  (/) ) ) ) )  =  (/) )
3231biantru 505 . . 3  |-  ( (/) ( V Trails  E ) P  <-> 
( (/) ( V Trails  E
) P  /\  ( Fun  `' ( P  |`  ( 1..^ ( # `  (/) ) ) )  /\  ( ( P " { 0 ,  ( # `  (/) ) } )  i^i  ( P
" ( 1..^ (
# `  (/) ) ) ) )  =  (/) ) ) )
335, 32syl6bbr 263 . 2  |-  ( ( ( V  e.  X  /\  E  e.  Y
)  /\  P  e.  Z )  ->  (
( (/) ( V Trails  E
) P  /\  Fun  `' ( P  |`  (
1..^ ( # `  (/) ) ) )  /\  ( ( P " { 0 ,  ( # `  (/) ) } )  i^i  ( P
" ( 1..^ (
# `  (/) ) ) ) )  =  (/) ) 
<->  (/) ( V Trails  E ) P ) )
34 0trl 23596 . 2  |-  ( ( ( V  e.  X  /\  E  e.  Y
)  /\  P  e.  Z )  ->  ( (/) ( V Trails  E ) P  <->  P : ( 0 ... 0 ) --> V ) )
353, 33, 343bitrd 279 1  |-  ( ( ( V  e.  X  /\  E  e.  Y
)  /\  P  e.  Z )  ->  ( (/) ( V Paths  E ) P  <->  P : ( 0 ... 0 ) --> V ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1370    e. wcel 1758   _Vcvv 3076    i^i cin 3434   (/)c0 3744   {cpr 3986   class class class wbr 4399   `'ccnv 4946    |` cres 4949   "cima 4950   Fun wfun 5519   -->wf 5521   ` cfv 5525  (class class class)co 6199   0cc0 9392   1c1 9393    <_ cle 9529   ZZcz 10756   ...cfz 11553  ..^cfzo 11664   #chash 12219   Trails ctrail 23557   Paths cpath 23558
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-rep 4510  ax-sep 4520  ax-nul 4528  ax-pow 4577  ax-pr 4638  ax-un 6481  ax-cnex 9448  ax-resscn 9449  ax-1cn 9450  ax-icn 9451  ax-addcl 9452  ax-addrcl 9453  ax-mulcl 9454  ax-mulrcl 9455  ax-mulcom 9456  ax-addass 9457  ax-mulass 9458  ax-distr 9459  ax-i2m1 9460  ax-1ne0 9461  ax-1rid 9462  ax-rnegex 9463  ax-rrecex 9464  ax-cnre 9465  ax-pre-lttri 9466  ax-pre-lttrn 9467  ax-pre-ltadd 9468  ax-pre-mulgt0 9469
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2649  df-nel 2650  df-ral 2803  df-rex 2804  df-reu 2805  df-rab 2807  df-v 3078  df-sbc 3293  df-csb 3395  df-dif 3438  df-un 3440  df-in 3442  df-ss 3449  df-pss 3451  df-nul 3745  df-if 3899  df-pw 3969  df-sn 3985  df-pr 3987  df-tp 3989  df-op 3991  df-uni 4199  df-int 4236  df-iun 4280  df-br 4400  df-opab 4458  df-mpt 4459  df-tr 4493  df-eprel 4739  df-id 4743  df-po 4748  df-so 4749  df-fr 4786  df-we 4788  df-ord 4829  df-on 4830  df-lim 4831  df-suc 4832  df-xp 4953  df-rel 4954  df-cnv 4955  df-co 4956  df-dm 4957  df-rn 4958  df-res 4959  df-ima 4960  df-iota 5488  df-fun 5527  df-fn 5528  df-f 5529  df-f1 5530  df-fo 5531  df-f1o 5532  df-fv 5533  df-riota 6160  df-ov 6202  df-oprab 6203  df-mpt2 6204  df-om 6586  df-1st 6686  df-2nd 6687  df-recs 6941  df-rdg 6975  df-1o 7029  df-oadd 7033  df-er 7210  df-map 7325  df-pm 7326  df-en 7420  df-dom 7421  df-sdom 7422  df-fin 7423  df-card 8219  df-pnf 9530  df-mnf 9531  df-xr 9532  df-ltxr 9533  df-le 9534  df-sub 9707  df-neg 9708  df-nn 10433  df-n0 10690  df-z 10757  df-uz 10972  df-fz 11554  df-fzo 11665  df-hash 12220  df-word 12346  df-wlk 23566  df-trail 23567  df-pth 23568
This theorem is referenced by:  0pthon  23629  0cycl  23664
  Copyright terms: Public domain W3C validator