MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0ntr Structured version   Unicode version

Theorem 0ntr 19865
Description: A subset with an empty interior cannot cover a whole (nonempty) topology. (Contributed by NM, 12-Sep-2006.)
Hypothesis
Ref Expression
clscld.1  |-  X  = 
U. J
Assertion
Ref Expression
0ntr  |-  ( ( ( J  e.  Top  /\  X  =/=  (/) )  /\  ( S  C_  X  /\  ( ( int `  J
) `  S )  =  (/) ) )  -> 
( X  \  S
)  =/=  (/) )

Proof of Theorem 0ntr
StepHypRef Expression
1 ssdif0 3828 . . . . 5  |-  ( X 
C_  S  <->  ( X  \  S )  =  (/) )
2 eqss 3457 . . . . . . . . 9  |-  ( S  =  X  <->  ( S  C_  X  /\  X  C_  S ) )
3 fveq2 5849 . . . . . . . . . . . . 13  |-  ( S  =  X  ->  (
( int `  J
) `  S )  =  ( ( int `  J ) `  X
) )
4 clscld.1 . . . . . . . . . . . . . 14  |-  X  = 
U. J
54ntrtop 19864 . . . . . . . . . . . . 13  |-  ( J  e.  Top  ->  (
( int `  J
) `  X )  =  X )
63, 5sylan9eqr 2465 . . . . . . . . . . . 12  |-  ( ( J  e.  Top  /\  S  =  X )  ->  ( ( int `  J
) `  S )  =  X )
76eqeq1d 2404 . . . . . . . . . . 11  |-  ( ( J  e.  Top  /\  S  =  X )  ->  ( ( ( int `  J ) `  S
)  =  (/)  <->  X  =  (/) ) )
87biimpd 207 . . . . . . . . . 10  |-  ( ( J  e.  Top  /\  S  =  X )  ->  ( ( ( int `  J ) `  S
)  =  (/)  ->  X  =  (/) ) )
98ex 432 . . . . . . . . 9  |-  ( J  e.  Top  ->  ( S  =  X  ->  ( ( ( int `  J
) `  S )  =  (/)  ->  X  =  (/) ) ) )
102, 9syl5bir 218 . . . . . . . 8  |-  ( J  e.  Top  ->  (
( S  C_  X  /\  X  C_  S )  ->  ( ( ( int `  J ) `
 S )  =  (/)  ->  X  =  (/) ) ) )
1110expd 434 . . . . . . 7  |-  ( J  e.  Top  ->  ( S  C_  X  ->  ( X  C_  S  ->  (
( ( int `  J
) `  S )  =  (/)  ->  X  =  (/) ) ) ) )
1211com34 83 . . . . . 6  |-  ( J  e.  Top  ->  ( S  C_  X  ->  (
( ( int `  J
) `  S )  =  (/)  ->  ( X  C_  S  ->  X  =  (/) ) ) ) )
1312imp32 431 . . . . 5  |-  ( ( J  e.  Top  /\  ( S  C_  X  /\  ( ( int `  J
) `  S )  =  (/) ) )  -> 
( X  C_  S  ->  X  =  (/) ) )
141, 13syl5bir 218 . . . 4  |-  ( ( J  e.  Top  /\  ( S  C_  X  /\  ( ( int `  J
) `  S )  =  (/) ) )  -> 
( ( X  \  S )  =  (/)  ->  X  =  (/) ) )
1514necon3d 2627 . . 3  |-  ( ( J  e.  Top  /\  ( S  C_  X  /\  ( ( int `  J
) `  S )  =  (/) ) )  -> 
( X  =/=  (/)  ->  ( X  \  S )  =/=  (/) ) )
1615imp 427 . 2  |-  ( ( ( J  e.  Top  /\  ( S  C_  X  /\  ( ( int `  J
) `  S )  =  (/) ) )  /\  X  =/=  (/) )  ->  ( X  \  S )  =/=  (/) )
1716an32s 805 1  |-  ( ( ( J  e.  Top  /\  X  =/=  (/) )  /\  ( S  C_  X  /\  ( ( int `  J
) `  S )  =  (/) ) )  -> 
( X  \  S
)  =/=  (/) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367    = wceq 1405    e. wcel 1842    =/= wne 2598    \ cdif 3411    C_ wss 3414   (/)c0 3738   U.cuni 4191   ` cfv 5569   Topctop 19686   intcnt 19810
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-rep 4507  ax-sep 4517  ax-nul 4525  ax-pow 4572  ax-pr 4630  ax-un 6574
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-ral 2759  df-rex 2760  df-reu 2761  df-rab 2763  df-v 3061  df-sbc 3278  df-csb 3374  df-dif 3417  df-un 3419  df-in 3421  df-ss 3428  df-nul 3739  df-if 3886  df-pw 3957  df-sn 3973  df-pr 3975  df-op 3979  df-uni 4192  df-iun 4273  df-br 4396  df-opab 4454  df-mpt 4455  df-id 4738  df-xp 4829  df-rel 4830  df-cnv 4831  df-co 4832  df-dm 4833  df-rn 4834  df-res 4835  df-ima 4836  df-iota 5533  df-fun 5571  df-fn 5572  df-f 5573  df-f1 5574  df-fo 5575  df-f1o 5576  df-fv 5577  df-top 19691  df-ntr 19813
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator