MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0nnei Structured version   Unicode version

Theorem 0nnei 20126
Description: The empty set is not a neighborhood of a nonempty set. (Contributed by FL, 18-Sep-2007.)
Assertion
Ref Expression
0nnei  |-  ( ( J  e.  Top  /\  S  =/=  (/) )  ->  -.  (/) 
e.  ( ( nei `  J ) `  S
) )

Proof of Theorem 0nnei
StepHypRef Expression
1 ssnei 20124 . . . . 5  |-  ( ( J  e.  Top  /\  (/) 
e.  ( ( nei `  J ) `  S
) )  ->  S  C_  (/) )
2 ss0b 3794 . . . . 5  |-  ( S 
C_  (/)  <->  S  =  (/) )
31, 2sylib 199 . . . 4  |-  ( ( J  e.  Top  /\  (/) 
e.  ( ( nei `  J ) `  S
) )  ->  S  =  (/) )
43ex 435 . . 3  |-  ( J  e.  Top  ->  ( (/) 
e.  ( ( nei `  J ) `  S
)  ->  S  =  (/) ) )
54necon3ad 2630 . 2  |-  ( J  e.  Top  ->  ( S  =/=  (/)  ->  -.  (/)  e.  ( ( nei `  J
) `  S )
) )
65imp 430 1  |-  ( ( J  e.  Top  /\  S  =/=  (/) )  ->  -.  (/) 
e.  ( ( nei `  J ) `  S
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 370    = wceq 1437    e. wcel 1872    =/= wne 2614    C_ wss 3436   (/)c0 3761   ` cfv 5601   Topctop 19915   neicnei 20111
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-8 1874  ax-9 1876  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2057  ax-ext 2401  ax-rep 4536  ax-sep 4546  ax-nul 4555  ax-pow 4602  ax-pr 4660
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3an 984  df-tru 1440  df-ex 1658  df-nf 1662  df-sb 1791  df-eu 2273  df-mo 2274  df-clab 2408  df-cleq 2414  df-clel 2417  df-nfc 2568  df-ne 2616  df-ral 2776  df-rex 2777  df-reu 2778  df-rab 2780  df-v 3082  df-sbc 3300  df-csb 3396  df-dif 3439  df-un 3441  df-in 3443  df-ss 3450  df-nul 3762  df-if 3912  df-pw 3983  df-sn 3999  df-pr 4001  df-op 4005  df-uni 4220  df-iun 4301  df-br 4424  df-opab 4483  df-mpt 4484  df-id 4768  df-xp 4859  df-rel 4860  df-cnv 4861  df-co 4862  df-dm 4863  df-rn 4864  df-res 4865  df-ima 4866  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-top 19919  df-nei 20112
This theorem is referenced by:  neifil  20893
  Copyright terms: Public domain W3C validator