MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0nelxp Structured version   Unicode version

Theorem 0nelxp 4851
Description: The empty set is not a member of a Cartesian product. (Contributed by NM, 2-May-1996.) (Revised by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
0nelxp  |-  -.  (/)  e.  ( A  X.  B )

Proof of Theorem 0nelxp
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3062 . . . . . 6  |-  x  e. 
_V
2 vex 3062 . . . . . 6  |-  y  e. 
_V
31, 2opnzi 4663 . . . . 5  |-  <. x ,  y >.  =/=  (/)
4 simpl 455 . . . . . . 7  |-  ( (
(/)  =  <. x ,  y >.  /\  (
x  e.  A  /\  y  e.  B )
)  ->  (/)  =  <. x ,  y >. )
54eqcomd 2410 . . . . . 6  |-  ( (
(/)  =  <. x ,  y >.  /\  (
x  e.  A  /\  y  e.  B )
)  ->  <. x ,  y >.  =  (/) )
65necon3ai 2631 . . . . 5  |-  ( <.
x ,  y >.  =/=  (/)  ->  -.  ( (/)  =  <. x ,  y
>.  /\  ( x  e.  A  /\  y  e.  B ) ) )
73, 6ax-mp 5 . . . 4  |-  -.  ( (/)  =  <. x ,  y
>.  /\  ( x  e.  A  /\  y  e.  B ) )
87nex 1648 . . 3  |-  -.  E. y ( (/)  =  <. x ,  y >.  /\  (
x  e.  A  /\  y  e.  B )
)
98nex 1648 . 2  |-  -.  E. x E. y ( (/)  =  <. x ,  y
>.  /\  ( x  e.  A  /\  y  e.  B ) )
10 elxp 4840 . 2  |-  ( (/)  e.  ( A  X.  B
)  <->  E. x E. y
( (/)  =  <. x ,  y >.  /\  (
x  e.  A  /\  y  e.  B )
) )
119, 10mtbir 297 1  |-  -.  (/)  e.  ( A  X.  B )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    /\ wa 367    = wceq 1405   E.wex 1633    e. wcel 1842    =/= wne 2598   (/)c0 3738   <.cop 3978    X. cxp 4821
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-sep 4517  ax-nul 4525  ax-pr 4630
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-v 3061  df-dif 3417  df-un 3419  df-in 3421  df-ss 3428  df-nul 3739  df-if 3886  df-sn 3973  df-pr 3975  df-op 3979  df-opab 4454  df-xp 4829
This theorem is referenced by:  dmsn0  5291  onxpdisj  5529  nfunv  5600  mpt2xopx0ov0  6947  reldmtpos  6966  dmtpos  6970  0nnq  9332  adderpq  9364  mulerpq  9365  lterpq  9378  0ncn  9540  structcnvcnv  14852  msrrcl  29755
  Copyright terms: Public domain W3C validator