MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0nelxp Structured version   Visualization version   Unicode version

Theorem 0nelxp 4862
Description: The empty set is not a member of a Cartesian product. (Contributed by NM, 2-May-1996.) (Revised by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
0nelxp  |-  -.  (/)  e.  ( A  X.  B )

Proof of Theorem 0nelxp
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3048 . . . . . 6  |-  x  e. 
_V
2 vex 3048 . . . . . 6  |-  y  e. 
_V
31, 2opnzi 4674 . . . . 5  |-  <. x ,  y >.  =/=  (/)
4 simpl 459 . . . . . . 7  |-  ( (
(/)  =  <. x ,  y >.  /\  (
x  e.  A  /\  y  e.  B )
)  ->  (/)  =  <. x ,  y >. )
54eqcomd 2457 . . . . . 6  |-  ( (
(/)  =  <. x ,  y >.  /\  (
x  e.  A  /\  y  e.  B )
)  ->  <. x ,  y >.  =  (/) )
65necon3ai 2649 . . . . 5  |-  ( <.
x ,  y >.  =/=  (/)  ->  -.  ( (/)  =  <. x ,  y
>.  /\  ( x  e.  A  /\  y  e.  B ) ) )
73, 6ax-mp 5 . . . 4  |-  -.  ( (/)  =  <. x ,  y
>.  /\  ( x  e.  A  /\  y  e.  B ) )
87nex 1678 . . 3  |-  -.  E. y ( (/)  =  <. x ,  y >.  /\  (
x  e.  A  /\  y  e.  B )
)
98nex 1678 . 2  |-  -.  E. x E. y ( (/)  =  <. x ,  y
>.  /\  ( x  e.  A  /\  y  e.  B ) )
10 elxp 4851 . 2  |-  ( (/)  e.  ( A  X.  B
)  <->  E. x E. y
( (/)  =  <. x ,  y >.  /\  (
x  e.  A  /\  y  e.  B )
) )
119, 10mtbir 301 1  |-  -.  (/)  e.  ( A  X.  B )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    /\ wa 371    = wceq 1444   E.wex 1663    e. wcel 1887    =/= wne 2622   (/)c0 3731   <.cop 3974    X. cxp 4832
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1669  ax-4 1682  ax-5 1758  ax-6 1805  ax-7 1851  ax-9 1896  ax-10 1915  ax-11 1920  ax-12 1933  ax-13 2091  ax-ext 2431  ax-sep 4525  ax-nul 4534  ax-pr 4639
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3an 987  df-tru 1447  df-ex 1664  df-nf 1668  df-sb 1798  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2581  df-ne 2624  df-v 3047  df-dif 3407  df-un 3409  df-in 3411  df-ss 3418  df-nul 3732  df-if 3882  df-sn 3969  df-pr 3971  df-op 3975  df-opab 4462  df-xp 4840
This theorem is referenced by:  dmsn0  5303  onxpdisj  5542  nfunv  5613  mpt2xopx0ov0  6962  reldmtpos  6981  dmtpos  6985  0nnq  9349  adderpq  9381  mulerpq  9382  lterpq  9395  0ncn  9557  structcnvcnv  15132  msrrcl  30181  relintabex  36187  vtxval0  39139  iedgval0  39140
  Copyright terms: Public domain W3C validator