MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0nelxp Structured version   Unicode version

Theorem 0nelxp 4976
Description: The empty set is not a member of a Cartesian product. (Contributed by NM, 2-May-1996.) (Revised by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
0nelxp  |-  -.  (/)  e.  ( A  X.  B )

Proof of Theorem 0nelxp
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3081 . . . . . 6  |-  x  e. 
_V
2 vex 3081 . . . . . 6  |-  y  e. 
_V
31, 2opnzi 4673 . . . . 5  |-  <. x ,  y >.  =/=  (/)
4 simpl 457 . . . . . . 7  |-  ( (
(/)  =  <. x ,  y >.  /\  (
x  e.  A  /\  y  e.  B )
)  ->  (/)  =  <. x ,  y >. )
54eqcomd 2462 . . . . . 6  |-  ( (
(/)  =  <. x ,  y >.  /\  (
x  e.  A  /\  y  e.  B )
)  ->  <. x ,  y >.  =  (/) )
65necon3ai 2680 . . . . 5  |-  ( <.
x ,  y >.  =/=  (/)  ->  -.  ( (/)  =  <. x ,  y
>.  /\  ( x  e.  A  /\  y  e.  B ) ) )
73, 6ax-mp 5 . . . 4  |-  -.  ( (/)  =  <. x ,  y
>.  /\  ( x  e.  A  /\  y  e.  B ) )
87nex 1601 . . 3  |-  -.  E. y ( (/)  =  <. x ,  y >.  /\  (
x  e.  A  /\  y  e.  B )
)
98nex 1601 . 2  |-  -.  E. x E. y ( (/)  =  <. x ,  y
>.  /\  ( x  e.  A  /\  y  e.  B ) )
10 elxp 4966 . 2  |-  ( (/)  e.  ( A  X.  B
)  <->  E. x E. y
( (/)  =  <. x ,  y >.  /\  (
x  e.  A  /\  y  e.  B )
) )
119, 10mtbir 299 1  |-  -.  (/)  e.  ( A  X.  B )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    /\ wa 369    = wceq 1370   E.wex 1587    e. wcel 1758    =/= wne 2648   (/)c0 3746   <.cop 3992    X. cxp 4947
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-sep 4522  ax-nul 4530  ax-pr 4640
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-v 3080  df-dif 3440  df-un 3442  df-in 3444  df-ss 3451  df-nul 3747  df-if 3901  df-sn 3987  df-pr 3989  df-op 3993  df-opab 4460  df-xp 4955
This theorem is referenced by:  onxpdisj  5029  dmsn0  5415  nfunv  5558  mpt2xopx0ov0  6844  reldmtpos  6864  dmtpos  6868  0nnq  9205  adderpq  9237  mulerpq  9238  lterpq  9251  0ncn  9412  structcnvcnv  14304
  Copyright terms: Public domain W3C validator