MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0mhm Structured version   Unicode version

Theorem 0mhm 15477
Description: The constant zero linear function between two monoids. (Contributed by Stefan O'Rear, 5-Sep-2015.)
Hypotheses
Ref Expression
0mhm.z  |-  .0.  =  ( 0g `  N )
0mhm.b  |-  B  =  ( Base `  M
)
Assertion
Ref Expression
0mhm  |-  ( ( M  e.  Mnd  /\  N  e.  Mnd )  ->  ( B  X.  {  .0.  } )  e.  ( M MndHom  N ) )

Proof of Theorem 0mhm
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 22 . 2  |-  ( ( M  e.  Mnd  /\  N  e.  Mnd )  ->  ( M  e.  Mnd  /\  N  e.  Mnd )
)
2 eqid 2438 . . . . . 6  |-  ( Base `  N )  =  (
Base `  N )
3 0mhm.z . . . . . 6  |-  .0.  =  ( 0g `  N )
42, 3mndidcl 15431 . . . . 5  |-  ( N  e.  Mnd  ->  .0.  e.  ( Base `  N
) )
54adantl 466 . . . 4  |-  ( ( M  e.  Mnd  /\  N  e.  Mnd )  ->  .0.  e.  ( Base `  N ) )
6 fconst6g 5594 . . . 4  |-  (  .0. 
e.  ( Base `  N
)  ->  ( B  X.  {  .0.  } ) : B --> ( Base `  N ) )
75, 6syl 16 . . 3  |-  ( ( M  e.  Mnd  /\  N  e.  Mnd )  ->  ( B  X.  {  .0.  } ) : B --> ( Base `  N )
)
8 simpr 461 . . . . . . 7  |-  ( ( M  e.  Mnd  /\  N  e.  Mnd )  ->  N  e.  Mnd )
9 eqid 2438 . . . . . . . . 9  |-  ( +g  `  N )  =  ( +g  `  N )
102, 9, 3mndlid 15433 . . . . . . . 8  |-  ( ( N  e.  Mnd  /\  .0.  e.  ( Base `  N
) )  ->  (  .0.  ( +g  `  N
)  .0.  )  =  .0.  )
1110eqcomd 2443 . . . . . . 7  |-  ( ( N  e.  Mnd  /\  .0.  e.  ( Base `  N
) )  ->  .0.  =  (  .0.  ( +g  `  N )  .0.  ) )
128, 5, 11syl2anc 661 . . . . . 6  |-  ( ( M  e.  Mnd  /\  N  e.  Mnd )  ->  .0.  =  (  .0.  ( +g  `  N
)  .0.  ) )
1312adantr 465 . . . . 5  |-  ( ( ( M  e.  Mnd  /\  N  e.  Mnd )  /\  ( x  e.  B  /\  y  e.  B
) )  ->  .0.  =  (  .0.  ( +g  `  N )  .0.  ) )
14 0mhm.b . . . . . . . . 9  |-  B  =  ( Base `  M
)
15 eqid 2438 . . . . . . . . 9  |-  ( +g  `  M )  =  ( +g  `  M )
1614, 15mndcl 15412 . . . . . . . 8  |-  ( ( M  e.  Mnd  /\  x  e.  B  /\  y  e.  B )  ->  ( x ( +g  `  M ) y )  e.  B )
17163expb 1188 . . . . . . 7  |-  ( ( M  e.  Mnd  /\  ( x  e.  B  /\  y  e.  B
) )  ->  (
x ( +g  `  M
) y )  e.  B )
1817adantlr 714 . . . . . 6  |-  ( ( ( M  e.  Mnd  /\  N  e.  Mnd )  /\  ( x  e.  B  /\  y  e.  B
) )  ->  (
x ( +g  `  M
) y )  e.  B )
19 fvex 5696 . . . . . . . 8  |-  ( 0g
`  N )  e. 
_V
203, 19eqeltri 2508 . . . . . . 7  |-  .0.  e.  _V
2120fvconst2 5928 . . . . . 6  |-  ( ( x ( +g  `  M
) y )  e.  B  ->  ( ( B  X.  {  .0.  }
) `  ( x
( +g  `  M ) y ) )  =  .0.  )
2218, 21syl 16 . . . . 5  |-  ( ( ( M  e.  Mnd  /\  N  e.  Mnd )  /\  ( x  e.  B  /\  y  e.  B
) )  ->  (
( B  X.  {  .0.  } ) `  (
x ( +g  `  M
) y ) )  =  .0.  )
2320fvconst2 5928 . . . . . . 7  |-  ( x  e.  B  ->  (
( B  X.  {  .0.  } ) `  x
)  =  .0.  )
2420fvconst2 5928 . . . . . . 7  |-  ( y  e.  B  ->  (
( B  X.  {  .0.  } ) `  y
)  =  .0.  )
2523, 24oveqan12d 6105 . . . . . 6  |-  ( ( x  e.  B  /\  y  e.  B )  ->  ( ( ( B  X.  {  .0.  }
) `  x )
( +g  `  N ) ( ( B  X.  {  .0.  } ) `  y ) )  =  (  .0.  ( +g  `  N )  .0.  )
)
2625adantl 466 . . . . 5  |-  ( ( ( M  e.  Mnd  /\  N  e.  Mnd )  /\  ( x  e.  B  /\  y  e.  B
) )  ->  (
( ( B  X.  {  .0.  } ) `  x ) ( +g  `  N ) ( ( B  X.  {  .0.  } ) `  y ) )  =  (  .0.  ( +g  `  N
)  .0.  ) )
2713, 22, 263eqtr4d 2480 . . . 4  |-  ( ( ( M  e.  Mnd  /\  N  e.  Mnd )  /\  ( x  e.  B  /\  y  e.  B
) )  ->  (
( B  X.  {  .0.  } ) `  (
x ( +g  `  M
) y ) )  =  ( ( ( B  X.  {  .0.  } ) `  x ) ( +g  `  N
) ( ( B  X.  {  .0.  }
) `  y )
) )
2827ralrimivva 2803 . . 3  |-  ( ( M  e.  Mnd  /\  N  e.  Mnd )  ->  A. x  e.  B  A. y  e.  B  ( ( B  X.  {  .0.  } ) `  ( x ( +g  `  M ) y ) )  =  ( ( ( B  X.  {  .0.  } ) `  x
) ( +g  `  N
) ( ( B  X.  {  .0.  }
) `  y )
) )
29 eqid 2438 . . . . . 6  |-  ( 0g
`  M )  =  ( 0g `  M
)
3014, 29mndidcl 15431 . . . . 5  |-  ( M  e.  Mnd  ->  ( 0g `  M )  e.  B )
3130adantr 465 . . . 4  |-  ( ( M  e.  Mnd  /\  N  e.  Mnd )  ->  ( 0g `  M
)  e.  B )
3220fvconst2 5928 . . . 4  |-  ( ( 0g `  M )  e.  B  ->  (
( B  X.  {  .0.  } ) `  ( 0g `  M ) )  =  .0.  )
3331, 32syl 16 . . 3  |-  ( ( M  e.  Mnd  /\  N  e.  Mnd )  ->  ( ( B  X.  {  .0.  } ) `  ( 0g `  M ) )  =  .0.  )
347, 28, 333jca 1168 . 2  |-  ( ( M  e.  Mnd  /\  N  e.  Mnd )  ->  ( ( B  X.  {  .0.  } ) : B --> ( Base `  N
)  /\  A. x  e.  B  A. y  e.  B  ( ( B  X.  {  .0.  }
) `  ( x
( +g  `  M ) y ) )  =  ( ( ( B  X.  {  .0.  }
) `  x )
( +g  `  N ) ( ( B  X.  {  .0.  } ) `  y ) )  /\  ( ( B  X.  {  .0.  } ) `  ( 0g `  M ) )  =  .0.  )
)
3514, 2, 15, 9, 29, 3ismhm 15458 . 2  |-  ( ( B  X.  {  .0.  } )  e.  ( M MndHom  N )  <->  ( ( M  e.  Mnd  /\  N  e.  Mnd )  /\  (
( B  X.  {  .0.  } ) : B --> ( Base `  N )  /\  A. x  e.  B  A. y  e.  B  ( ( B  X.  {  .0.  } ) `  ( x ( +g  `  M ) y ) )  =  ( ( ( B  X.  {  .0.  } ) `  x
) ( +g  `  N
) ( ( B  X.  {  .0.  }
) `  y )
)  /\  ( ( B  X.  {  .0.  }
) `  ( 0g `  M ) )  =  .0.  ) ) )
361, 34, 35sylanbrc 664 1  |-  ( ( M  e.  Mnd  /\  N  e.  Mnd )  ->  ( B  X.  {  .0.  } )  e.  ( M MndHom  N ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756   A.wral 2710   _Vcvv 2967   {csn 3872    X. cxp 4833   -->wf 5409   ` cfv 5413  (class class class)co 6086   Basecbs 14166   +g cplusg 14230   0gc0g 14370   Mndcmnd 15401   MndHom cmhm 15454
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2419  ax-sep 4408  ax-nul 4416  ax-pow 4465  ax-pr 4526  ax-un 6367
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2256  df-mo 2257  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2715  df-rex 2716  df-reu 2717  df-rmo 2718  df-rab 2719  df-v 2969  df-sbc 3182  df-dif 3326  df-un 3328  df-in 3330  df-ss 3337  df-nul 3633  df-if 3787  df-pw 3857  df-sn 3873  df-pr 3875  df-op 3879  df-uni 4087  df-br 4288  df-opab 4346  df-mpt 4347  df-id 4631  df-xp 4841  df-rel 4842  df-cnv 4843  df-co 4844  df-dm 4845  df-rn 4846  df-iota 5376  df-fun 5415  df-fn 5416  df-f 5417  df-fv 5421  df-riota 6047  df-ov 6089  df-oprab 6090  df-mpt2 6091  df-map 7208  df-0g 14372  df-mnd 15407  df-mhm 15456
This theorem is referenced by:  0ghm  15752
  Copyright terms: Public domain W3C validator