MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0mhm Unicode version

Theorem 0mhm 14713
Description: The constant zero linear function between two monoids. (Contributed by Stefan O'Rear, 5-Sep-2015.)
Hypotheses
Ref Expression
0mhm.z  |-  .0.  =  ( 0g `  N )
0mhm.b  |-  B  =  ( Base `  M
)
Assertion
Ref Expression
0mhm  |-  ( ( M  e.  Mnd  /\  N  e.  Mnd )  ->  ( B  X.  {  .0.  } )  e.  ( M MndHom  N ) )

Proof of Theorem 0mhm
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 20 . 2  |-  ( ( M  e.  Mnd  /\  N  e.  Mnd )  ->  ( M  e.  Mnd  /\  N  e.  Mnd )
)
2 eqid 2404 . . . . . 6  |-  ( Base `  N )  =  (
Base `  N )
3 0mhm.z . . . . . 6  |-  .0.  =  ( 0g `  N )
42, 3mndidcl 14669 . . . . 5  |-  ( N  e.  Mnd  ->  .0.  e.  ( Base `  N
) )
54adantl 453 . . . 4  |-  ( ( M  e.  Mnd  /\  N  e.  Mnd )  ->  .0.  e.  ( Base `  N ) )
6 fconst6g 5591 . . . 4  |-  (  .0. 
e.  ( Base `  N
)  ->  ( B  X.  {  .0.  } ) : B --> ( Base `  N ) )
75, 6syl 16 . . 3  |-  ( ( M  e.  Mnd  /\  N  e.  Mnd )  ->  ( B  X.  {  .0.  } ) : B --> ( Base `  N )
)
8 simpr 448 . . . . . . 7  |-  ( ( M  e.  Mnd  /\  N  e.  Mnd )  ->  N  e.  Mnd )
9 eqid 2404 . . . . . . . . 9  |-  ( +g  `  N )  =  ( +g  `  N )
102, 9, 3mndlid 14671 . . . . . . . 8  |-  ( ( N  e.  Mnd  /\  .0.  e.  ( Base `  N
) )  ->  (  .0.  ( +g  `  N
)  .0.  )  =  .0.  )
1110eqcomd 2409 . . . . . . 7  |-  ( ( N  e.  Mnd  /\  .0.  e.  ( Base `  N
) )  ->  .0.  =  (  .0.  ( +g  `  N )  .0.  ) )
128, 5, 11syl2anc 643 . . . . . 6  |-  ( ( M  e.  Mnd  /\  N  e.  Mnd )  ->  .0.  =  (  .0.  ( +g  `  N
)  .0.  ) )
1312adantr 452 . . . . 5  |-  ( ( ( M  e.  Mnd  /\  N  e.  Mnd )  /\  ( x  e.  B  /\  y  e.  B
) )  ->  .0.  =  (  .0.  ( +g  `  N )  .0.  ) )
14 0mhm.b . . . . . . . . 9  |-  B  =  ( Base `  M
)
15 eqid 2404 . . . . . . . . 9  |-  ( +g  `  M )  =  ( +g  `  M )
1614, 15mndcl 14650 . . . . . . . 8  |-  ( ( M  e.  Mnd  /\  x  e.  B  /\  y  e.  B )  ->  ( x ( +g  `  M ) y )  e.  B )
17163expb 1154 . . . . . . 7  |-  ( ( M  e.  Mnd  /\  ( x  e.  B  /\  y  e.  B
) )  ->  (
x ( +g  `  M
) y )  e.  B )
1817adantlr 696 . . . . . 6  |-  ( ( ( M  e.  Mnd  /\  N  e.  Mnd )  /\  ( x  e.  B  /\  y  e.  B
) )  ->  (
x ( +g  `  M
) y )  e.  B )
19 fvex 5701 . . . . . . . 8  |-  ( 0g
`  N )  e. 
_V
203, 19eqeltri 2474 . . . . . . 7  |-  .0.  e.  _V
2120fvconst2 5906 . . . . . 6  |-  ( ( x ( +g  `  M
) y )  e.  B  ->  ( ( B  X.  {  .0.  }
) `  ( x
( +g  `  M ) y ) )  =  .0.  )
2218, 21syl 16 . . . . 5  |-  ( ( ( M  e.  Mnd  /\  N  e.  Mnd )  /\  ( x  e.  B  /\  y  e.  B
) )  ->  (
( B  X.  {  .0.  } ) `  (
x ( +g  `  M
) y ) )  =  .0.  )
2320fvconst2 5906 . . . . . . 7  |-  ( x  e.  B  ->  (
( B  X.  {  .0.  } ) `  x
)  =  .0.  )
2420fvconst2 5906 . . . . . . 7  |-  ( y  e.  B  ->  (
( B  X.  {  .0.  } ) `  y
)  =  .0.  )
2523, 24oveqan12d 6059 . . . . . 6  |-  ( ( x  e.  B  /\  y  e.  B )  ->  ( ( ( B  X.  {  .0.  }
) `  x )
( +g  `  N ) ( ( B  X.  {  .0.  } ) `  y ) )  =  (  .0.  ( +g  `  N )  .0.  )
)
2625adantl 453 . . . . 5  |-  ( ( ( M  e.  Mnd  /\  N  e.  Mnd )  /\  ( x  e.  B  /\  y  e.  B
) )  ->  (
( ( B  X.  {  .0.  } ) `  x ) ( +g  `  N ) ( ( B  X.  {  .0.  } ) `  y ) )  =  (  .0.  ( +g  `  N
)  .0.  ) )
2713, 22, 263eqtr4d 2446 . . . 4  |-  ( ( ( M  e.  Mnd  /\  N  e.  Mnd )  /\  ( x  e.  B  /\  y  e.  B
) )  ->  (
( B  X.  {  .0.  } ) `  (
x ( +g  `  M
) y ) )  =  ( ( ( B  X.  {  .0.  } ) `  x ) ( +g  `  N
) ( ( B  X.  {  .0.  }
) `  y )
) )
2827ralrimivva 2758 . . 3  |-  ( ( M  e.  Mnd  /\  N  e.  Mnd )  ->  A. x  e.  B  A. y  e.  B  ( ( B  X.  {  .0.  } ) `  ( x ( +g  `  M ) y ) )  =  ( ( ( B  X.  {  .0.  } ) `  x
) ( +g  `  N
) ( ( B  X.  {  .0.  }
) `  y )
) )
29 eqid 2404 . . . . . 6  |-  ( 0g
`  M )  =  ( 0g `  M
)
3014, 29mndidcl 14669 . . . . 5  |-  ( M  e.  Mnd  ->  ( 0g `  M )  e.  B )
3130adantr 452 . . . 4  |-  ( ( M  e.  Mnd  /\  N  e.  Mnd )  ->  ( 0g `  M
)  e.  B )
3220fvconst2 5906 . . . 4  |-  ( ( 0g `  M )  e.  B  ->  (
( B  X.  {  .0.  } ) `  ( 0g `  M ) )  =  .0.  )
3331, 32syl 16 . . 3  |-  ( ( M  e.  Mnd  /\  N  e.  Mnd )  ->  ( ( B  X.  {  .0.  } ) `  ( 0g `  M ) )  =  .0.  )
347, 28, 333jca 1134 . 2  |-  ( ( M  e.  Mnd  /\  N  e.  Mnd )  ->  ( ( B  X.  {  .0.  } ) : B --> ( Base `  N
)  /\  A. x  e.  B  A. y  e.  B  ( ( B  X.  {  .0.  }
) `  ( x
( +g  `  M ) y ) )  =  ( ( ( B  X.  {  .0.  }
) `  x )
( +g  `  N ) ( ( B  X.  {  .0.  } ) `  y ) )  /\  ( ( B  X.  {  .0.  } ) `  ( 0g `  M ) )  =  .0.  )
)
3514, 2, 15, 9, 29, 3ismhm 14695 . 2  |-  ( ( B  X.  {  .0.  } )  e.  ( M MndHom  N )  <->  ( ( M  e.  Mnd  /\  N  e.  Mnd )  /\  (
( B  X.  {  .0.  } ) : B --> ( Base `  N )  /\  A. x  e.  B  A. y  e.  B  ( ( B  X.  {  .0.  } ) `  ( x ( +g  `  M ) y ) )  =  ( ( ( B  X.  {  .0.  } ) `  x
) ( +g  `  N
) ( ( B  X.  {  .0.  }
) `  y )
)  /\  ( ( B  X.  {  .0.  }
) `  ( 0g `  M ) )  =  .0.  ) ) )
361, 34, 35sylanbrc 646 1  |-  ( ( M  e.  Mnd  /\  N  e.  Mnd )  ->  ( B  X.  {  .0.  } )  e.  ( M MndHom  N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721   A.wral 2666   _Vcvv 2916   {csn 3774    X. cxp 4835   -->wf 5409   ` cfv 5413  (class class class)co 6040   Basecbs 13424   +g cplusg 13484   0gc0g 13678   Mndcmnd 14639   MndHom cmhm 14691
This theorem is referenced by:  0ghm  14975
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-op 3783  df-uni 3976  df-br 4173  df-opab 4227  df-mpt 4228  df-id 4458  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-riota 6508  df-map 6979  df-0g 13682  df-mnd 14645  df-mhm 14693
  Copyright terms: Public domain W3C validator