Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  0iin Structured version   Visualization version   Unicode version

Theorem 0iin 4327
 Description: An empty indexed intersection is the universal class. (Contributed by NM, 20-Oct-2005.)
Assertion
Ref Expression
0iin

Proof of Theorem 0iin
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 df-iin 4272 . 2
2 vex 3034 . . . 4
3 ral0 3865 . . . 4
42, 32th 247 . . 3
54abbi2i 2586 . 2
61, 5eqtr4i 2496 1
 Colors of variables: wff setvar class Syntax hints:   wceq 1452   wcel 1904  cab 2457  wral 2756  cvv 3031  c0 3722  ciin 4270 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451 This theorem depends on definitions:  df-bi 190  df-an 378  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ral 2761  df-v 3033  df-dif 3393  df-nul 3723  df-iin 4272 This theorem is referenced by:  iinrab2  4332  iinvdif  4341  riin0  4343  iin0  4575  xpriindi  4976  cmpfi  20500  ptbasfi  20673  pol0N  33545
 Copyright terms: Public domain W3C validator