MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0idsr Unicode version

Theorem 0idsr 8928
Description: The signed real number 0 is an identity element for addition of signed reals. (Contributed by NM, 10-Apr-1996.) (New usage is discouraged.)
Assertion
Ref Expression
0idsr  |-  ( A  e.  R.  ->  ( A  +R  0R )  =  A )

Proof of Theorem 0idsr
Dummy variables  x  y  z  w  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nr 8891 . 2  |-  R.  =  ( ( P.  X.  P. ) /.  ~R  )
2 oveq1 6047 . . 3  |-  ( [
<. x ,  y >. ]  ~R  =  A  -> 
( [ <. x ,  y >. ]  ~R  +R  0R )  =  ( A  +R  0R ) )
3 id 20 . . 3  |-  ( [
<. x ,  y >. ]  ~R  =  A  ->  [ <. x ,  y
>. ]  ~R  =  A )
42, 3eqeq12d 2418 . 2  |-  ( [
<. x ,  y >. ]  ~R  =  A  -> 
( ( [ <. x ,  y >. ]  ~R  +R  0R )  =  [ <. x ,  y >. ]  ~R  <->  ( A  +R  0R )  =  A
) )
5 df-0r 8895 . . . 4  |-  0R  =  [ <. 1P ,  1P >. ]  ~R
65oveq2i 6051 . . 3  |-  ( [
<. x ,  y >. ]  ~R  +R  0R )  =  ( [ <. x ,  y >. ]  ~R  +R  [ <. 1P ,  1P >. ]  ~R  )
7 1pr 8848 . . . . 5  |-  1P  e.  P.
8 addsrpr 8906 . . . . 5  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( 1P  e.  P.  /\  1P  e.  P. )
)  ->  ( [ <. x ,  y >. ]  ~R  +R  [ <. 1P ,  1P >. ]  ~R  )  =  [ <. (
x  +P.  1P ) ,  ( y  +P. 
1P ) >. ]  ~R  )
97, 7, 8mpanr12 667 . . . 4  |-  ( ( x  e.  P.  /\  y  e.  P. )  ->  ( [ <. x ,  y >. ]  ~R  +R  [ <. 1P ,  1P >. ]  ~R  )  =  [ <. ( x  +P.  1P ) ,  ( y  +P.  1P ) >. ]  ~R  )
10 addclpr 8851 . . . . . . 7  |-  ( ( x  e.  P.  /\  1P  e.  P. )  -> 
( x  +P.  1P )  e.  P. )
117, 10mpan2 653 . . . . . 6  |-  ( x  e.  P.  ->  (
x  +P.  1P )  e.  P. )
12 addclpr 8851 . . . . . . 7  |-  ( ( y  e.  P.  /\  1P  e.  P. )  -> 
( y  +P.  1P )  e.  P. )
137, 12mpan2 653 . . . . . 6  |-  ( y  e.  P.  ->  (
y  +P.  1P )  e.  P. )
1411, 13anim12i 550 . . . . 5  |-  ( ( x  e.  P.  /\  y  e.  P. )  ->  ( ( x  +P.  1P )  e.  P.  /\  ( y  +P.  1P )  e.  P. )
)
15 vex 2919 . . . . . . 7  |-  x  e. 
_V
16 vex 2919 . . . . . . 7  |-  y  e. 
_V
177elexi 2925 . . . . . . 7  |-  1P  e.  _V
18 addcompr 8854 . . . . . . 7  |-  ( z  +P.  w )  =  ( w  +P.  z
)
19 addasspr 8855 . . . . . . 7  |-  ( ( z  +P.  w )  +P.  v )  =  ( z  +P.  (
w  +P.  v )
)
2015, 16, 17, 18, 19caov12 6234 . . . . . 6  |-  ( x  +P.  ( y  +P. 
1P ) )  =  ( y  +P.  (
x  +P.  1P )
)
21 enreceq 8900 . . . . . 6  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( ( x  +P.  1P )  e.  P.  /\  ( y  +P.  1P )  e.  P. )
)  ->  ( [ <. x ,  y >. ]  ~R  =  [ <. ( x  +P.  1P ) ,  ( y  +P. 
1P ) >. ]  ~R  <->  ( x  +P.  ( y  +P.  1P ) )  =  ( y  +P.  ( x  +P.  1P ) ) ) )
2220, 21mpbiri 225 . . . . 5  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( ( x  +P.  1P )  e.  P.  /\  ( y  +P.  1P )  e.  P. )
)  ->  [ <. x ,  y >. ]  ~R  =  [ <. ( x  +P.  1P ) ,  ( y  +P.  1P ) >. ]  ~R  )
2314, 22mpdan 650 . . . 4  |-  ( ( x  e.  P.  /\  y  e.  P. )  ->  [ <. x ,  y
>. ]  ~R  =  [ <. ( x  +P.  1P ) ,  ( y  +P.  1P ) >. ]  ~R  )
249, 23eqtr4d 2439 . . 3  |-  ( ( x  e.  P.  /\  y  e.  P. )  ->  ( [ <. x ,  y >. ]  ~R  +R  [ <. 1P ,  1P >. ]  ~R  )  =  [ <. x ,  y
>. ]  ~R  )
256, 24syl5eq 2448 . 2  |-  ( ( x  e.  P.  /\  y  e.  P. )  ->  ( [ <. x ,  y >. ]  ~R  +R  0R )  =  [ <. x ,  y >. ]  ~R  )
261, 4, 25ecoptocl 6953 1  |-  ( A  e.  R.  ->  ( A  +R  0R )  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1649    e. wcel 1721   <.cop 3777  (class class class)co 6040   [cec 6862   P.cnp 8690   1Pc1p 8691    +P. cpp 8692    ~R cer 8697   R.cnr 8698   0Rc0r 8699    +R cplr 8702
This theorem is referenced by:  addgt0sr  8935  sqgt0sr  8937  map2psrpr  8941  supsrlem  8942  addresr  8969  mulresr  8970  axi2m1  8990  axcnre  8995
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-inf2 7552
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309  df-recs 6592  df-rdg 6627  df-1o 6683  df-oadd 6687  df-omul 6688  df-er 6864  df-ec 6866  df-qs 6870  df-ni 8705  df-pli 8706  df-mi 8707  df-lti 8708  df-plpq 8741  df-mpq 8742  df-ltpq 8743  df-enq 8744  df-nq 8745  df-erq 8746  df-plq 8747  df-mq 8748  df-1nq 8749  df-rq 8750  df-ltnq 8751  df-np 8814  df-1p 8815  df-plp 8816  df-ltp 8818  df-plpr 8888  df-enr 8890  df-nr 8891  df-plr 8892  df-0r 8895
  Copyright terms: Public domain W3C validator