MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0frgp Structured version   Unicode version

Theorem 0frgp 16996
Description: The free group on zero generators is trivial. (Contributed by Mario Carneiro, 21-Apr-2016.)
Hypotheses
Ref Expression
0frgp.g  |-  G  =  (freeGrp `  (/) )
0frgp.b  |-  B  =  ( Base `  G
)
Assertion
Ref Expression
0frgp  |-  B  ~~  1o

Proof of Theorem 0frgp
Dummy variables  x  f are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mptresid 5316 . . . . . . . 8  |-  ( x  e.  B  |->  x )  =  (  _I  |`  B )
2 0ex 4569 . . . . . . . . . . . 12  |-  (/)  e.  _V
3 0frgp.g . . . . . . . . . . . . 13  |-  G  =  (freeGrp `  (/) )
43frgpgrp 16979 . . . . . . . . . . . 12  |-  ( (/)  e.  _V  ->  G  e.  Grp )
52, 4ax-mp 5 . . . . . . . . . . 11  |-  G  e. 
Grp
6 f0 5748 . . . . . . . . . . 11  |-  (/) : (/) --> B
7 0frgp.b . . . . . . . . . . . 12  |-  B  =  ( Base `  G
)
8 eqid 2454 . . . . . . . . . . . . . . . 16  |-  ( ~FG  `  (/) )  =  ( ~FG  `  (/) )
9 eqid 2454 . . . . . . . . . . . . . . . 16  |-  (varFGrp `  (/) )  =  (varFGrp `  (/) )
108, 9, 3, 7vrgpf 16985 . . . . . . . . . . . . . . 15  |-  ( (/)  e.  _V  ->  (varFGrp `  (/) ) : (/) --> B )
11 ffn 5713 . . . . . . . . . . . . . . 15  |-  ( (varFGrp `  (/) ) : (/) --> B  -> 
(varFGrp `  (/) )  Fn  (/) )
122, 10, 11mp2b 10 . . . . . . . . . . . . . 14  |-  (varFGrp `  (/) )  Fn  (/)
13 fn0 5682 . . . . . . . . . . . . . 14  |-  ( (varFGrp `  (/) )  Fn  (/)  <->  (varFGrp `  (/) )  =  (/) )
1412, 13mpbi 208 . . . . . . . . . . . . 13  |-  (varFGrp `  (/) )  =  (/)
1514eqcomi 2467 . . . . . . . . . . . 12  |-  (/)  =  (varFGrp `  (/) )
163, 7, 15frgpup3 16995 . . . . . . . . . . 11  |-  ( ( G  e.  Grp  /\  (/) 
e.  _V  /\  (/) : (/) --> B )  ->  E! f  e.  ( G  GrpHom  G ) ( f  o.  (/) )  =  (/) )
175, 2, 6, 16mp3an 1322 . . . . . . . . . 10  |-  E! f  e.  ( G  GrpHom  G ) ( f  o.  (/) )  =  (/)
18 reurmo 3072 . . . . . . . . . 10  |-  ( E! f  e.  ( G 
GrpHom  G ) ( f  o.  (/) )  =  (/)  ->  E* f  e.  ( G  GrpHom  G ) ( f  o.  (/) )  =  (/) )
1917, 18ax-mp 5 . . . . . . . . 9  |-  E* f  e.  ( G  GrpHom  G ) ( f  o.  (/) )  =  (/)
207idghm 16481 . . . . . . . . . . 11  |-  ( G  e.  Grp  ->  (  _I  |`  B )  e.  ( G  GrpHom  G ) )
215, 20ax-mp 5 . . . . . . . . . 10  |-  (  _I  |`  B )  e.  ( G  GrpHom  G )
22 tru 1402 . . . . . . . . . 10  |- T.
2321, 22pm3.2i 453 . . . . . . . . 9  |-  ( (  _I  |`  B )  e.  ( G  GrpHom  G )  /\ T.  )
24 eqid 2454 . . . . . . . . . . . 12  |-  ( 0g
`  G )  =  ( 0g `  G
)
2524, 70ghm 16480 . . . . . . . . . . 11  |-  ( ( G  e.  Grp  /\  G  e.  Grp )  ->  ( B  X.  {
( 0g `  G
) } )  e.  ( G  GrpHom  G ) )
265, 5, 25mp2an 670 . . . . . . . . . 10  |-  ( B  X.  { ( 0g
`  G ) } )  e.  ( G 
GrpHom  G )
2726, 22pm3.2i 453 . . . . . . . . 9  |-  ( ( B  X.  { ( 0g `  G ) } )  e.  ( G  GrpHom  G )  /\ T.  )
28 co02 5504 . . . . . . . . . . . 12  |-  ( f  o.  (/) )  =  (/)
2928bitru 1410 . . . . . . . . . . 11  |-  ( ( f  o.  (/) )  =  (/) 
<-> T.  )
3029a1i 11 . . . . . . . . . 10  |-  ( f  =  (  _I  |`  B )  ->  ( ( f  o.  (/) )  =  (/)  <-> T.  ) )
3129a1i 11 . . . . . . . . . 10  |-  ( f  =  ( B  X.  { ( 0g `  G ) } )  ->  ( ( f  o.  (/) )  =  (/)  <-> T.  ) )
3230, 31rmoi 3417 . . . . . . . . 9  |-  ( ( E* f  e.  ( G  GrpHom  G ) ( f  o.  (/) )  =  (/)  /\  ( (  _I  |`  B )  e.  ( G  GrpHom  G )  /\ T.  )  /\  (
( B  X.  {
( 0g `  G
) } )  e.  ( G  GrpHom  G )  /\ T.  ) )  ->  (  _I  |`  B )  =  ( B  X.  { ( 0g `  G ) } ) )
3319, 23, 27, 32mp3an 1322 . . . . . . . 8  |-  (  _I  |`  B )  =  ( B  X.  { ( 0g `  G ) } )
34 fconstmpt 5032 . . . . . . . 8  |-  ( B  X.  { ( 0g
`  G ) } )  =  ( x  e.  B  |->  ( 0g
`  G ) )
351, 33, 343eqtri 2487 . . . . . . 7  |-  ( x  e.  B  |->  x )  =  ( x  e.  B  |->  ( 0g `  G ) )
36 mpteqb 5946 . . . . . . . 8  |-  ( A. x  e.  B  x  e.  B  ->  ( ( x  e.  B  |->  x )  =  ( x  e.  B  |->  ( 0g
`  G ) )  <->  A. x  e.  B  x  =  ( 0g `  G ) ) )
37 id 22 . . . . . . . 8  |-  ( x  e.  B  ->  x  e.  B )
3836, 37mprg 2817 . . . . . . 7  |-  ( ( x  e.  B  |->  x )  =  ( x  e.  B  |->  ( 0g
`  G ) )  <->  A. x  e.  B  x  =  ( 0g `  G ) )
3935, 38mpbi 208 . . . . . 6  |-  A. x  e.  B  x  =  ( 0g `  G )
4039rspec 2822 . . . . 5  |-  ( x  e.  B  ->  x  =  ( 0g `  G ) )
41 elsn 4030 . . . . 5  |-  ( x  e.  { ( 0g
`  G ) }  <-> 
x  =  ( 0g
`  G ) )
4240, 41sylibr 212 . . . 4  |-  ( x  e.  B  ->  x  e.  { ( 0g `  G ) } )
4342ssriv 3493 . . 3  |-  B  C_  { ( 0g `  G
) }
447, 24grpidcl 16277 . . . . 5  |-  ( G  e.  Grp  ->  ( 0g `  G )  e.  B )
455, 44ax-mp 5 . . . 4  |-  ( 0g
`  G )  e.  B
46 snssi 4160 . . . 4  |-  ( ( 0g `  G )  e.  B  ->  { ( 0g `  G ) }  C_  B )
4745, 46ax-mp 5 . . 3  |-  { ( 0g `  G ) }  C_  B
4843, 47eqssi 3505 . 2  |-  B  =  { ( 0g `  G ) }
49 fvex 5858 . . 3  |-  ( 0g
`  G )  e. 
_V
5049ensn1 7572 . 2  |-  { ( 0g `  G ) }  ~~  1o
5148, 50eqbrtri 4458 1  |-  B  ~~  1o
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184    /\ wa 367    = wceq 1398   T. wtru 1399    e. wcel 1823   A.wral 2804   E!wreu 2806   E*wrmo 2807   _Vcvv 3106    C_ wss 3461   (/)c0 3783   {csn 4016   class class class wbr 4439    |-> cmpt 4497    _I cid 4779    X. cxp 4986    |` cres 4990    o. ccom 4992    Fn wfn 5565   -->wf 5566   ` cfv 5570  (class class class)co 6270   1oc1o 7115    ~~ cen 7506   Basecbs 14716   0gc0g 14929   Grpcgrp 16252    GrpHom cghm 16463   ~FG cefg 16923  freeGrpcfrgp 16924  varFGrpcvrgp 16925
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-rep 4550  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-nel 2652  df-ral 2809  df-rex 2810  df-reu 2811  df-rmo 2812  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-tp 4021  df-op 4023  df-ot 4025  df-uni 4236  df-int 4272  df-iun 4317  df-iin 4318  df-br 4440  df-opab 4498  df-mpt 4499  df-tr 4533  df-eprel 4780  df-id 4784  df-po 4789  df-so 4790  df-fr 4827  df-we 4829  df-ord 4870  df-on 4871  df-lim 4872  df-suc 4873  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-riota 6232  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-om 6674  df-1st 6773  df-2nd 6774  df-recs 7034  df-rdg 7068  df-1o 7122  df-2o 7123  df-oadd 7126  df-er 7303  df-ec 7305  df-qs 7309  df-map 7414  df-pm 7415  df-en 7510  df-dom 7511  df-sdom 7512  df-fin 7513  df-sup 7893  df-card 8311  df-cda 8539  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9798  df-neg 9799  df-nn 10532  df-2 10590  df-3 10591  df-4 10592  df-5 10593  df-6 10594  df-7 10595  df-8 10596  df-9 10597  df-10 10598  df-n0 10792  df-z 10861  df-dec 10977  df-uz 11083  df-fz 11676  df-fzo 11800  df-seq 12090  df-hash 12388  df-word 12526  df-lsw 12527  df-concat 12528  df-s1 12529  df-substr 12530  df-splice 12531  df-reverse 12532  df-s2 12804  df-struct 14718  df-ndx 14719  df-slot 14720  df-base 14721  df-sets 14722  df-ress 14723  df-plusg 14797  df-mulr 14798  df-sca 14800  df-vsca 14801  df-ip 14802  df-tset 14803  df-ple 14804  df-ds 14806  df-0g 14931  df-gsum 14932  df-imas 14997  df-qus 14998  df-mgm 16071  df-sgrp 16110  df-mnd 16120  df-mhm 16165  df-submnd 16166  df-frmd 16216  df-vrmd 16217  df-grp 16256  df-minusg 16257  df-ghm 16464  df-efg 16926  df-frgp 16927  df-vrgp 16928
This theorem is referenced by:  frgpcyg  18785
  Copyright terms: Public domain W3C validator