MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0elixp Structured version   Unicode version

Theorem 0elixp 7286
Description: Membership of the empty set in an infinite Cartesian product. (Contributed by Steve Rodriguez, 29-Sep-2006.)
Assertion
Ref Expression
0elixp  |-  (/)  e.  X_ x  e.  (/)  A

Proof of Theorem 0elixp
StepHypRef Expression
1 0ex 4417 . . 3  |-  (/)  e.  _V
21snid 3900 . 2  |-  (/)  e.  { (/)
}
3 ixp0x 7283 . 2  |-  X_ x  e.  (/)  A  =  { (/)
}
42, 3eleqtrri 2511 1  |-  (/)  e.  X_ x  e.  (/)  A
Colors of variables: wff setvar class
Syntax hints:    e. wcel 1756   (/)c0 3632   {csn 3872   X_cixp 7255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2419  ax-sep 4408  ax-nul 4416  ax-pr 4526
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2256  df-mo 2257  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2715  df-rex 2716  df-rab 2719  df-v 2969  df-dif 3326  df-un 3328  df-in 3330  df-ss 3337  df-nul 3633  df-if 3787  df-sn 3873  df-pr 3875  df-op 3879  df-br 4288  df-opab 4346  df-id 4631  df-xp 4841  df-rel 4842  df-cnv 4843  df-co 4844  df-dm 4845  df-fun 5415  df-fn 5416  df-ixp 7256
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator