MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0dvds Structured version   Unicode version

Theorem 0dvds 13664
Description: Only 0 is divisible by 0 . (Contributed by Paul Chapman, 21-Mar-2011.)
Assertion
Ref Expression
0dvds  |-  ( N  e.  ZZ  ->  (
0  ||  N  <->  N  = 
0 ) )

Proof of Theorem 0dvds
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 0z 10761 . . . 4  |-  0  e.  ZZ
2 divides 13648 . . . 4  |-  ( ( 0  e.  ZZ  /\  N  e.  ZZ )  ->  ( 0  ||  N  <->  E. n  e.  ZZ  (
n  x.  0 )  =  N ) )
31, 2mpan 670 . . 3  |-  ( N  e.  ZZ  ->  (
0  ||  N  <->  E. n  e.  ZZ  ( n  x.  0 )  =  N ) )
4 zcn 10755 . . . . . . 7  |-  ( n  e.  ZZ  ->  n  e.  CC )
54mul01d 9672 . . . . . 6  |-  ( n  e.  ZZ  ->  (
n  x.  0 )  =  0 )
6 eqtr2 2478 . . . . . 6  |-  ( ( ( n  x.  0 )  =  N  /\  ( n  x.  0
)  =  0 )  ->  N  =  0 )
75, 6sylan2 474 . . . . 5  |-  ( ( ( n  x.  0 )  =  N  /\  n  e.  ZZ )  ->  N  =  0 )
87ancoms 453 . . . 4  |-  ( ( n  e.  ZZ  /\  ( n  x.  0
)  =  N )  ->  N  =  0 )
98rexlimiva 2935 . . 3  |-  ( E. n  e.  ZZ  (
n  x.  0 )  =  N  ->  N  =  0 )
103, 9syl6bi 228 . 2  |-  ( N  e.  ZZ  ->  (
0  ||  N  ->  N  =  0 ) )
11 dvds0 13659 . . . 4  |-  ( 0  e.  ZZ  ->  0  ||  0 )
121, 11ax-mp 5 . . 3  |-  0  ||  0
13 breq2 4397 . . 3  |-  ( N  =  0  ->  (
0  ||  N  <->  0  ||  0 ) )
1412, 13mpbiri 233 . 2  |-  ( N  =  0  ->  0  ||  N )
1510, 14impbid1 203 1  |-  ( N  e.  ZZ  ->  (
0  ||  N  <->  N  = 
0 ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    = wceq 1370    e. wcel 1758   E.wrex 2796   class class class wbr 4393  (class class class)co 6193   0cc0 9386    x. cmul 9391   ZZcz 10750    || cdivides 13646
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-sep 4514  ax-nul 4522  ax-pow 4571  ax-pr 4632  ax-un 6475  ax-resscn 9443  ax-1cn 9444  ax-icn 9445  ax-addcl 9446  ax-addrcl 9447  ax-mulcl 9448  ax-mulrcl 9449  ax-mulcom 9450  ax-addass 9451  ax-mulass 9452  ax-distr 9453  ax-i2m1 9454  ax-1ne0 9455  ax-1rid 9456  ax-rnegex 9457  ax-rrecex 9458  ax-cnre 9459  ax-pre-lttri 9460  ax-pre-lttrn 9461  ax-pre-ltadd 9462
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-nel 2647  df-ral 2800  df-rex 2801  df-rab 2804  df-v 3073  df-sbc 3288  df-csb 3390  df-dif 3432  df-un 3434  df-in 3436  df-ss 3443  df-nul 3739  df-if 3893  df-pw 3963  df-sn 3979  df-pr 3981  df-op 3985  df-uni 4193  df-br 4394  df-opab 4452  df-mpt 4453  df-id 4737  df-po 4742  df-so 4743  df-xp 4947  df-rel 4948  df-cnv 4949  df-co 4950  df-dm 4951  df-rn 4952  df-res 4953  df-ima 4954  df-iota 5482  df-fun 5521  df-fn 5522  df-f 5523  df-f1 5524  df-fo 5525  df-f1o 5526  df-fv 5527  df-ov 6196  df-er 7204  df-en 7414  df-dom 7415  df-sdom 7416  df-pnf 9524  df-mnf 9525  df-ltxr 9527  df-neg 9702  df-z 10751  df-dvds 13647
This theorem is referenced by:  fsumdvds  13687  dvdseq  13691  dvdssq  13855  rpdvds  13921  pcdvdstr  14053  pc2dvds  14056  mndodcongi  16159  oddvdsnn0  16160  oddvds  16163  odmulgeq  16171  odf1  16176  odf1o1  16184  gexdvds  16196  gexnnod  16200  torsubg  16449  znf1o  18102  jm2.19  29483
  Copyright terms: Public domain W3C validator