MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0dgrb Structured version   Unicode version

Theorem 0dgrb 22812
Description: A function has degree zero iff it is a constant function. (Contributed by Mario Carneiro, 23-Jul-2014.)
Assertion
Ref Expression
0dgrb  |-  ( F  e.  (Poly `  S
)  ->  ( (deg `  F )  =  0  <-> 
F  =  ( CC 
X.  { ( F `
 0 ) } ) ) )

Proof of Theorem 0dgrb
Dummy variables  z 
k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2454 . . . . . . . 8  |-  (coeff `  F )  =  (coeff `  F )
2 eqid 2454 . . . . . . . 8  |-  (deg `  F )  =  (deg
`  F )
31, 2coeid 22804 . . . . . . 7  |-  ( F  e.  (Poly `  S
)  ->  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... (deg `  F
) ) ( ( (coeff `  F ) `  k )  x.  (
z ^ k ) ) ) )
43adantr 463 . . . . . 6  |-  ( ( F  e.  (Poly `  S )  /\  (deg `  F )  =  0 )  ->  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... (deg `  F
) ) ( ( (coeff `  F ) `  k )  x.  (
z ^ k ) ) ) )
5 simplr 753 . . . . . . . . . 10  |-  ( ( ( F  e.  (Poly `  S )  /\  (deg `  F )  =  0 )  /\  z  e.  CC )  ->  (deg `  F )  =  0 )
65oveq2d 6286 . . . . . . . . 9  |-  ( ( ( F  e.  (Poly `  S )  /\  (deg `  F )  =  0 )  /\  z  e.  CC )  ->  (
0 ... (deg `  F
) )  =  ( 0 ... 0 ) )
76sumeq1d 13608 . . . . . . . 8  |-  ( ( ( F  e.  (Poly `  S )  /\  (deg `  F )  =  0 )  /\  z  e.  CC )  ->  sum_ k  e.  ( 0 ... (deg `  F ) ) ( ( (coeff `  F
) `  k )  x.  ( z ^ k
) )  =  sum_ k  e.  ( 0 ... 0 ) ( ( (coeff `  F
) `  k )  x.  ( z ^ k
) ) )
8 0z 10871 . . . . . . . . . 10  |-  0  e.  ZZ
9 exp0 12155 . . . . . . . . . . . . . 14  |-  ( z  e.  CC  ->  (
z ^ 0 )  =  1 )
109adantl 464 . . . . . . . . . . . . 13  |-  ( ( ( F  e.  (Poly `  S )  /\  (deg `  F )  =  0 )  /\  z  e.  CC )  ->  (
z ^ 0 )  =  1 )
1110oveq2d 6286 . . . . . . . . . . . 12  |-  ( ( ( F  e.  (Poly `  S )  /\  (deg `  F )  =  0 )  /\  z  e.  CC )  ->  (
( (coeff `  F
) `  0 )  x.  ( z ^ 0 ) )  =  ( ( (coeff `  F
) `  0 )  x.  1 ) )
121coef3 22798 . . . . . . . . . . . . . . 15  |-  ( F  e.  (Poly `  S
)  ->  (coeff `  F
) : NN0 --> CC )
13 0nn0 10806 . . . . . . . . . . . . . . 15  |-  0  e.  NN0
14 ffvelrn 6005 . . . . . . . . . . . . . . 15  |-  ( ( (coeff `  F ) : NN0 --> CC  /\  0  e.  NN0 )  ->  (
(coeff `  F ) `  0 )  e.  CC )
1512, 13, 14sylancl 660 . . . . . . . . . . . . . 14  |-  ( F  e.  (Poly `  S
)  ->  ( (coeff `  F ) `  0
)  e.  CC )
1615ad2antrr 723 . . . . . . . . . . . . 13  |-  ( ( ( F  e.  (Poly `  S )  /\  (deg `  F )  =  0 )  /\  z  e.  CC )  ->  (
(coeff `  F ) `  0 )  e.  CC )
1716mulid1d 9602 . . . . . . . . . . . 12  |-  ( ( ( F  e.  (Poly `  S )  /\  (deg `  F )  =  0 )  /\  z  e.  CC )  ->  (
( (coeff `  F
) `  0 )  x.  1 )  =  ( (coeff `  F ) `  0 ) )
1811, 17eqtrd 2495 . . . . . . . . . . 11  |-  ( ( ( F  e.  (Poly `  S )  /\  (deg `  F )  =  0 )  /\  z  e.  CC )  ->  (
( (coeff `  F
) `  0 )  x.  ( z ^ 0 ) )  =  ( (coeff `  F ) `  0 ) )
1918, 16eqeltrd 2542 . . . . . . . . . 10  |-  ( ( ( F  e.  (Poly `  S )  /\  (deg `  F )  =  0 )  /\  z  e.  CC )  ->  (
( (coeff `  F
) `  0 )  x.  ( z ^ 0 ) )  e.  CC )
20 fveq2 5848 . . . . . . . . . . . 12  |-  ( k  =  0  ->  (
(coeff `  F ) `  k )  =  ( (coeff `  F ) `  0 ) )
21 oveq2 6278 . . . . . . . . . . . 12  |-  ( k  =  0  ->  (
z ^ k )  =  ( z ^
0 ) )
2220, 21oveq12d 6288 . . . . . . . . . . 11  |-  ( k  =  0  ->  (
( (coeff `  F
) `  k )  x.  ( z ^ k
) )  =  ( ( (coeff `  F
) `  0 )  x.  ( z ^ 0 ) ) )
2322fsum1 13649 . . . . . . . . . 10  |-  ( ( 0  e.  ZZ  /\  ( ( (coeff `  F ) `  0
)  x.  ( z ^ 0 ) )  e.  CC )  ->  sum_ k  e.  ( 0 ... 0 ) ( ( (coeff `  F
) `  k )  x.  ( z ^ k
) )  =  ( ( (coeff `  F
) `  0 )  x.  ( z ^ 0 ) ) )
248, 19, 23sylancr 661 . . . . . . . . 9  |-  ( ( ( F  e.  (Poly `  S )  /\  (deg `  F )  =  0 )  /\  z  e.  CC )  ->  sum_ k  e.  ( 0 ... 0
) ( ( (coeff `  F ) `  k
)  x.  ( z ^ k ) )  =  ( ( (coeff `  F ) `  0
)  x.  ( z ^ 0 ) ) )
2524, 18eqtrd 2495 . . . . . . . 8  |-  ( ( ( F  e.  (Poly `  S )  /\  (deg `  F )  =  0 )  /\  z  e.  CC )  ->  sum_ k  e.  ( 0 ... 0
) ( ( (coeff `  F ) `  k
)  x.  ( z ^ k ) )  =  ( (coeff `  F ) `  0
) )
267, 25eqtrd 2495 . . . . . . 7  |-  ( ( ( F  e.  (Poly `  S )  /\  (deg `  F )  =  0 )  /\  z  e.  CC )  ->  sum_ k  e.  ( 0 ... (deg `  F ) ) ( ( (coeff `  F
) `  k )  x.  ( z ^ k
) )  =  ( (coeff `  F ) `  0 ) )
2726mpteq2dva 4525 . . . . . 6  |-  ( ( F  e.  (Poly `  S )  /\  (deg `  F )  =  0 )  ->  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... (deg `  F ) ) ( ( (coeff `  F
) `  k )  x.  ( z ^ k
) ) )  =  ( z  e.  CC  |->  ( (coeff `  F ) `  0 ) ) )
284, 27eqtrd 2495 . . . . 5  |-  ( ( F  e.  (Poly `  S )  /\  (deg `  F )  =  0 )  ->  F  =  ( z  e.  CC  |->  ( (coeff `  F ) `  0 ) ) )
29 fconstmpt 5032 . . . . 5  |-  ( CC 
X.  { ( (coeff `  F ) `  0
) } )  =  ( z  e.  CC  |->  ( (coeff `  F ) `  0 ) )
3028, 29syl6eqr 2513 . . . 4  |-  ( ( F  e.  (Poly `  S )  /\  (deg `  F )  =  0 )  ->  F  =  ( CC  X.  { ( (coeff `  F ) `  0 ) } ) )
3130fveq1d 5850 . . . . . . 7  |-  ( ( F  e.  (Poly `  S )  /\  (deg `  F )  =  0 )  ->  ( F `  0 )  =  ( ( CC  X.  { ( (coeff `  F ) `  0
) } ) ` 
0 ) )
32 0cn 9577 . . . . . . . 8  |-  0  e.  CC
33 fvex 5858 . . . . . . . . 9  |-  ( (coeff `  F ) `  0
)  e.  _V
3433fvconst2 6103 . . . . . . . 8  |-  ( 0  e.  CC  ->  (
( CC  X.  {
( (coeff `  F
) `  0 ) } ) `  0
)  =  ( (coeff `  F ) `  0
) )
3532, 34ax-mp 5 . . . . . . 7  |-  ( ( CC  X.  { ( (coeff `  F ) `  0 ) } ) `  0 )  =  ( (coeff `  F ) `  0
)
3631, 35syl6eq 2511 . . . . . 6  |-  ( ( F  e.  (Poly `  S )  /\  (deg `  F )  =  0 )  ->  ( F `  0 )  =  ( (coeff `  F
) `  0 )
)
3736sneqd 4028 . . . . 5  |-  ( ( F  e.  (Poly `  S )  /\  (deg `  F )  =  0 )  ->  { ( F `  0 ) }  =  { (
(coeff `  F ) `  0 ) } )
3837xpeq2d 5012 . . . 4  |-  ( ( F  e.  (Poly `  S )  /\  (deg `  F )  =  0 )  ->  ( CC  X.  { ( F ` 
0 ) } )  =  ( CC  X.  { ( (coeff `  F ) `  0
) } ) )
3930, 38eqtr4d 2498 . . 3  |-  ( ( F  e.  (Poly `  S )  /\  (deg `  F )  =  0 )  ->  F  =  ( CC  X.  { ( F `  0 ) } ) )
4039ex 432 . 2  |-  ( F  e.  (Poly `  S
)  ->  ( (deg `  F )  =  0  ->  F  =  ( CC  X.  { ( F `  0 ) } ) ) )
41 plyf 22764 . . . . 5  |-  ( F  e.  (Poly `  S
)  ->  F : CC
--> CC )
42 ffvelrn 6005 . . . . 5  |-  ( ( F : CC --> CC  /\  0  e.  CC )  ->  ( F `  0
)  e.  CC )
4341, 32, 42sylancl 660 . . . 4  |-  ( F  e.  (Poly `  S
)  ->  ( F `  0 )  e.  CC )
44 0dgr 22811 . . . 4  |-  ( ( F `  0 )  e.  CC  ->  (deg `  ( CC  X.  {
( F `  0
) } ) )  =  0 )
4543, 44syl 16 . . 3  |-  ( F  e.  (Poly `  S
)  ->  (deg `  ( CC  X.  { ( F `
 0 ) } ) )  =  0 )
46 fveq2 5848 . . . 4  |-  ( F  =  ( CC  X.  { ( F ` 
0 ) } )  ->  (deg `  F
)  =  (deg `  ( CC  X.  { ( F `  0 ) } ) ) )
4746eqeq1d 2456 . . 3  |-  ( F  =  ( CC  X.  { ( F ` 
0 ) } )  ->  ( (deg `  F )  =  0  <-> 
(deg `  ( CC  X.  { ( F ` 
0 ) } ) )  =  0 ) )
4845, 47syl5ibrcom 222 . 2  |-  ( F  e.  (Poly `  S
)  ->  ( F  =  ( CC  X.  { ( F ` 
0 ) } )  ->  (deg `  F
)  =  0 ) )
4940, 48impbid 191 1  |-  ( F  e.  (Poly `  S
)  ->  ( (deg `  F )  =  0  <-> 
F  =  ( CC 
X.  { ( F `
 0 ) } ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367    = wceq 1398    e. wcel 1823   {csn 4016    |-> cmpt 4497    X. cxp 4986   -->wf 5566   ` cfv 5570  (class class class)co 6270   CCcc 9479   0cc0 9481   1c1 9482    x. cmul 9486   NN0cn0 10791   ZZcz 10860   ...cfz 11675   ^cexp 12151   sum_csu 13593  Polycply 22750  coeffccoe 22752  degcdgr 22753
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-rep 4550  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565  ax-inf2 8049  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558  ax-pre-sup 9559  ax-addf 9560
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-fal 1404  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-nel 2652  df-ral 2809  df-rex 2810  df-reu 2811  df-rmo 2812  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-tp 4021  df-op 4023  df-uni 4236  df-int 4272  df-iun 4317  df-br 4440  df-opab 4498  df-mpt 4499  df-tr 4533  df-eprel 4780  df-id 4784  df-po 4789  df-so 4790  df-fr 4827  df-se 4828  df-we 4829  df-ord 4870  df-on 4871  df-lim 4872  df-suc 4873  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-isom 5579  df-riota 6232  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-of 6513  df-om 6674  df-1st 6773  df-2nd 6774  df-recs 7034  df-rdg 7068  df-1o 7122  df-oadd 7126  df-er 7303  df-map 7414  df-pm 7415  df-en 7510  df-dom 7511  df-sdom 7512  df-fin 7513  df-sup 7893  df-oi 7927  df-card 8311  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9798  df-neg 9799  df-div 10203  df-nn 10532  df-2 10590  df-3 10591  df-n0 10792  df-z 10861  df-uz 11083  df-rp 11222  df-fz 11676  df-fzo 11800  df-fl 11910  df-seq 12093  df-exp 12152  df-hash 12391  df-cj 13017  df-re 13018  df-im 13019  df-sqrt 13153  df-abs 13154  df-clim 13396  df-rlim 13397  df-sum 13594  df-0p 22246  df-ply 22754  df-coe 22756  df-dgr 22757
This theorem is referenced by:  dgrnznn  22813  dgreq0  22831  dgrcolem2  22840  dgrco  22841  plyrem  22870  fta1  22873  aaliou2  22905
  Copyright terms: Public domain W3C validator