MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  00id Structured version   Unicode version

Theorem 00id 9536
Description:  0 is its own additive identity. (Contributed by Scott Fenton, 3-Jan-2013.)
Assertion
Ref Expression
00id  |-  ( 0  +  0 )  =  0

Proof of Theorem 00id
Dummy variables  y 
c are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0re 9378 . 2  |-  0  e.  RR
2 ax-rnegex 9345 . 2  |-  ( 0  e.  RR  ->  E. c  e.  RR  ( 0  +  c )  =  0 )
3 oveq2 6094 . . . . . . 7  |-  ( c  =  0  ->  (
0  +  c )  =  ( 0  +  0 ) )
43eqeq1d 2446 . . . . . 6  |-  ( c  =  0  ->  (
( 0  +  c )  =  0  <->  (
0  +  0 )  =  0 ) )
54biimpd 207 . . . . 5  |-  ( c  =  0  ->  (
( 0  +  c )  =  0  -> 
( 0  +  0 )  =  0 ) )
65adantld 467 . . . 4  |-  ( c  =  0  ->  (
( c  e.  RR  /\  ( 0  +  c )  =  0 )  ->  ( 0  +  0 )  =  0 ) )
7 ax-rrecex 9346 . . . . . . 7  |-  ( ( c  e.  RR  /\  c  =/=  0 )  ->  E. y  e.  RR  ( c  x.  y
)  =  1 )
87adantlr 714 . . . . . 6  |-  ( ( ( c  e.  RR  /\  ( 0  +  c )  =  0 )  /\  c  =/=  0
)  ->  E. y  e.  RR  ( c  x.  y )  =  1 )
9 simplll 757 . . . . . . . . . . 11  |-  ( ( ( ( c  e.  RR  /\  ( 0  +  c )  =  0 )  /\  c  =/=  0 )  /\  (
y  e.  RR  /\  ( c  x.  y
)  =  1 ) )  ->  c  e.  RR )
109recnd 9404 . . . . . . . . . 10  |-  ( ( ( ( c  e.  RR  /\  ( 0  +  c )  =  0 )  /\  c  =/=  0 )  /\  (
y  e.  RR  /\  ( c  x.  y
)  =  1 ) )  ->  c  e.  CC )
11 simprl 755 . . . . . . . . . . 11  |-  ( ( ( ( c  e.  RR  /\  ( 0  +  c )  =  0 )  /\  c  =/=  0 )  /\  (
y  e.  RR  /\  ( c  x.  y
)  =  1 ) )  ->  y  e.  RR )
1211recnd 9404 . . . . . . . . . 10  |-  ( ( ( ( c  e.  RR  /\  ( 0  +  c )  =  0 )  /\  c  =/=  0 )  /\  (
y  e.  RR  /\  ( c  x.  y
)  =  1 ) )  ->  y  e.  CC )
13 0cn 9370 . . . . . . . . . . 11  |-  0  e.  CC
14 mulass 9362 . . . . . . . . . . 11  |-  ( ( c  e.  CC  /\  y  e.  CC  /\  0  e.  CC )  ->  (
( c  x.  y
)  x.  0 )  =  ( c  x.  ( y  x.  0 ) ) )
1513, 14mp3an3 1303 . . . . . . . . . 10  |-  ( ( c  e.  CC  /\  y  e.  CC )  ->  ( ( c  x.  y )  x.  0 )  =  ( c  x.  ( y  x.  0 ) ) )
1610, 12, 15syl2anc 661 . . . . . . . . 9  |-  ( ( ( ( c  e.  RR  /\  ( 0  +  c )  =  0 )  /\  c  =/=  0 )  /\  (
y  e.  RR  /\  ( c  x.  y
)  =  1 ) )  ->  ( (
c  x.  y )  x.  0 )  =  ( c  x.  (
y  x.  0 ) ) )
17 oveq1 6093 . . . . . . . . . . 11  |-  ( ( c  x.  y )  =  1  ->  (
( c  x.  y
)  x.  0 )  =  ( 1  x.  0 ) )
1813mulid2i 9381 . . . . . . . . . . 11  |-  ( 1  x.  0 )  =  0
1917, 18syl6eq 2486 . . . . . . . . . 10  |-  ( ( c  x.  y )  =  1  ->  (
( c  x.  y
)  x.  0 )  =  0 )
2019ad2antll 728 . . . . . . . . 9  |-  ( ( ( ( c  e.  RR  /\  ( 0  +  c )  =  0 )  /\  c  =/=  0 )  /\  (
y  e.  RR  /\  ( c  x.  y
)  =  1 ) )  ->  ( (
c  x.  y )  x.  0 )  =  0 )
2116, 20eqtr3d 2472 . . . . . . . 8  |-  ( ( ( ( c  e.  RR  /\  ( 0  +  c )  =  0 )  /\  c  =/=  0 )  /\  (
y  e.  RR  /\  ( c  x.  y
)  =  1 ) )  ->  ( c  x.  ( y  x.  0 ) )  =  0 )
2221oveq1d 6101 . . . . . . 7  |-  ( ( ( ( c  e.  RR  /\  ( 0  +  c )  =  0 )  /\  c  =/=  0 )  /\  (
y  e.  RR  /\  ( c  x.  y
)  =  1 ) )  ->  ( (
c  x.  ( y  x.  0 ) )  +  0 )  =  ( 0  +  0 ) )
23 simpllr 758 . . . . . . . . . . . 12  |-  ( ( ( ( c  e.  RR  /\  ( 0  +  c )  =  0 )  /\  c  =/=  0 )  /\  (
y  e.  RR  /\  ( c  x.  y
)  =  1 ) )  ->  ( 0  +  c )  =  0 )
2423oveq1d 6101 . . . . . . . . . . 11  |-  ( ( ( ( c  e.  RR  /\  ( 0  +  c )  =  0 )  /\  c  =/=  0 )  /\  (
y  e.  RR  /\  ( c  x.  y
)  =  1 ) )  ->  ( (
0  +  c )  x.  ( y  x.  0 ) )  =  ( 0  x.  (
y  x.  0 ) ) )
25 remulcl 9359 . . . . . . . . . . . . . . 15  |-  ( ( y  e.  RR  /\  0  e.  RR )  ->  ( y  x.  0 )  e.  RR )
261, 25mpan2 671 . . . . . . . . . . . . . 14  |-  ( y  e.  RR  ->  (
y  x.  0 )  e.  RR )
2726ad2antrl 727 . . . . . . . . . . . . 13  |-  ( ( ( ( c  e.  RR  /\  ( 0  +  c )  =  0 )  /\  c  =/=  0 )  /\  (
y  e.  RR  /\  ( c  x.  y
)  =  1 ) )  ->  ( y  x.  0 )  e.  RR )
2827recnd 9404 . . . . . . . . . . . 12  |-  ( ( ( ( c  e.  RR  /\  ( 0  +  c )  =  0 )  /\  c  =/=  0 )  /\  (
y  e.  RR  /\  ( c  x.  y
)  =  1 ) )  ->  ( y  x.  0 )  e.  CC )
29 adddir 9369 . . . . . . . . . . . . 13  |-  ( ( 0  e.  CC  /\  c  e.  CC  /\  (
y  x.  0 )  e.  CC )  -> 
( ( 0  +  c )  x.  (
y  x.  0 ) )  =  ( ( 0  x.  ( y  x.  0 ) )  +  ( c  x.  ( y  x.  0 ) ) ) )
3013, 29mp3an1 1301 . . . . . . . . . . . 12  |-  ( ( c  e.  CC  /\  ( y  x.  0 )  e.  CC )  ->  ( ( 0  +  c )  x.  ( y  x.  0 ) )  =  ( ( 0  x.  (
y  x.  0 ) )  +  ( c  x.  ( y  x.  0 ) ) ) )
3110, 28, 30syl2anc 661 . . . . . . . . . . 11  |-  ( ( ( ( c  e.  RR  /\  ( 0  +  c )  =  0 )  /\  c  =/=  0 )  /\  (
y  e.  RR  /\  ( c  x.  y
)  =  1 ) )  ->  ( (
0  +  c )  x.  ( y  x.  0 ) )  =  ( ( 0  x.  ( y  x.  0 ) )  +  ( c  x.  ( y  x.  0 ) ) ) )
3224, 31eqtr3d 2472 . . . . . . . . . 10  |-  ( ( ( ( c  e.  RR  /\  ( 0  +  c )  =  0 )  /\  c  =/=  0 )  /\  (
y  e.  RR  /\  ( c  x.  y
)  =  1 ) )  ->  ( 0  x.  ( y  x.  0 ) )  =  ( ( 0  x.  ( y  x.  0 ) )  +  ( c  x.  ( y  x.  0 ) ) ) )
3332oveq1d 6101 . . . . . . . . 9  |-  ( ( ( ( c  e.  RR  /\  ( 0  +  c )  =  0 )  /\  c  =/=  0 )  /\  (
y  e.  RR  /\  ( c  x.  y
)  =  1 ) )  ->  ( (
0  x.  ( y  x.  0 ) )  +  0 )  =  ( ( ( 0  x.  ( y  x.  0 ) )  +  ( c  x.  (
y  x.  0 ) ) )  +  0 ) )
34 remulcl 9359 . . . . . . . . . . . . 13  |-  ( ( 0  e.  RR  /\  ( y  x.  0 )  e.  RR )  ->  ( 0  x.  ( y  x.  0 ) )  e.  RR )
351, 26, 34sylancr 663 . . . . . . . . . . . 12  |-  ( y  e.  RR  ->  (
0  x.  ( y  x.  0 ) )  e.  RR )
3635ad2antrl 727 . . . . . . . . . . 11  |-  ( ( ( ( c  e.  RR  /\  ( 0  +  c )  =  0 )  /\  c  =/=  0 )  /\  (
y  e.  RR  /\  ( c  x.  y
)  =  1 ) )  ->  ( 0  x.  ( y  x.  0 ) )  e.  RR )
3736recnd 9404 . . . . . . . . . 10  |-  ( ( ( ( c  e.  RR  /\  ( 0  +  c )  =  0 )  /\  c  =/=  0 )  /\  (
y  e.  RR  /\  ( c  x.  y
)  =  1 ) )  ->  ( 0  x.  ( y  x.  0 ) )  e.  CC )
38 remulcl 9359 . . . . . . . . . . . 12  |-  ( ( c  e.  RR  /\  ( y  x.  0 )  e.  RR )  ->  ( c  x.  ( y  x.  0 ) )  e.  RR )
399, 27, 38syl2anc 661 . . . . . . . . . . 11  |-  ( ( ( ( c  e.  RR  /\  ( 0  +  c )  =  0 )  /\  c  =/=  0 )  /\  (
y  e.  RR  /\  ( c  x.  y
)  =  1 ) )  ->  ( c  x.  ( y  x.  0 ) )  e.  RR )
4039recnd 9404 . . . . . . . . . 10  |-  ( ( ( ( c  e.  RR  /\  ( 0  +  c )  =  0 )  /\  c  =/=  0 )  /\  (
y  e.  RR  /\  ( c  x.  y
)  =  1 ) )  ->  ( c  x.  ( y  x.  0 ) )  e.  CC )
41 addass 9361 . . . . . . . . . . 11  |-  ( ( ( 0  x.  (
y  x.  0 ) )  e.  CC  /\  ( c  x.  (
y  x.  0 ) )  e.  CC  /\  0  e.  CC )  ->  ( ( ( 0  x.  ( y  x.  0 ) )  +  ( c  x.  (
y  x.  0 ) ) )  +  0 )  =  ( ( 0  x.  ( y  x.  0 ) )  +  ( ( c  x.  ( y  x.  0 ) )  +  0 ) ) )
4213, 41mp3an3 1303 . . . . . . . . . 10  |-  ( ( ( 0  x.  (
y  x.  0 ) )  e.  CC  /\  ( c  x.  (
y  x.  0 ) )  e.  CC )  ->  ( ( ( 0  x.  ( y  x.  0 ) )  +  ( c  x.  ( y  x.  0 ) ) )  +  0 )  =  ( ( 0  x.  (
y  x.  0 ) )  +  ( ( c  x.  ( y  x.  0 ) )  +  0 ) ) )
4337, 40, 42syl2anc 661 . . . . . . . . 9  |-  ( ( ( ( c  e.  RR  /\  ( 0  +  c )  =  0 )  /\  c  =/=  0 )  /\  (
y  e.  RR  /\  ( c  x.  y
)  =  1 ) )  ->  ( (
( 0  x.  (
y  x.  0 ) )  +  ( c  x.  ( y  x.  0 ) ) )  +  0 )  =  ( ( 0  x.  ( y  x.  0 ) )  +  ( ( c  x.  (
y  x.  0 ) )  +  0 ) ) )
4433, 43eqtr2d 2471 . . . . . . . 8  |-  ( ( ( ( c  e.  RR  /\  ( 0  +  c )  =  0 )  /\  c  =/=  0 )  /\  (
y  e.  RR  /\  ( c  x.  y
)  =  1 ) )  ->  ( (
0  x.  ( y  x.  0 ) )  +  ( ( c  x.  ( y  x.  0 ) )  +  0 ) )  =  ( ( 0  x.  ( y  x.  0 ) )  +  0 ) )
4526, 38sylan2 474 . . . . . . . . . . 11  |-  ( ( c  e.  RR  /\  y  e.  RR )  ->  ( c  x.  (
y  x.  0 ) )  e.  RR )
46 readdcl 9357 . . . . . . . . . . 11  |-  ( ( ( c  x.  (
y  x.  0 ) )  e.  RR  /\  0  e.  RR )  ->  ( ( c  x.  ( y  x.  0 ) )  +  0 )  e.  RR )
4745, 1, 46sylancl 662 . . . . . . . . . 10  |-  ( ( c  e.  RR  /\  y  e.  RR )  ->  ( ( c  x.  ( y  x.  0 ) )  +  0 )  e.  RR )
489, 11, 47syl2anc 661 . . . . . . . . 9  |-  ( ( ( ( c  e.  RR  /\  ( 0  +  c )  =  0 )  /\  c  =/=  0 )  /\  (
y  e.  RR  /\  ( c  x.  y
)  =  1 ) )  ->  ( (
c  x.  ( y  x.  0 ) )  +  0 )  e.  RR )
49 readdcan 9535 . . . . . . . . . 10  |-  ( ( ( ( c  x.  ( y  x.  0 ) )  +  0 )  e.  RR  /\  0  e.  RR  /\  (
0  x.  ( y  x.  0 ) )  e.  RR )  -> 
( ( ( 0  x.  ( y  x.  0 ) )  +  ( ( c  x.  ( y  x.  0 ) )  +  0 ) )  =  ( ( 0  x.  (
y  x.  0 ) )  +  0 )  <-> 
( ( c  x.  ( y  x.  0 ) )  +  0 )  =  0 ) )
501, 49mp3an2 1302 . . . . . . . . 9  |-  ( ( ( ( c  x.  ( y  x.  0 ) )  +  0 )  e.  RR  /\  ( 0  x.  (
y  x.  0 ) )  e.  RR )  ->  ( ( ( 0  x.  ( y  x.  0 ) )  +  ( ( c  x.  ( y  x.  0 ) )  +  0 ) )  =  ( ( 0  x.  ( y  x.  0 ) )  +  0 )  <->  ( ( c  x.  ( y  x.  0 ) )  +  0 )  =  0 ) )
5148, 36, 50syl2anc 661 . . . . . . . 8  |-  ( ( ( ( c  e.  RR  /\  ( 0  +  c )  =  0 )  /\  c  =/=  0 )  /\  (
y  e.  RR  /\  ( c  x.  y
)  =  1 ) )  ->  ( (
( 0  x.  (
y  x.  0 ) )  +  ( ( c  x.  ( y  x.  0 ) )  +  0 ) )  =  ( ( 0  x.  ( y  x.  0 ) )  +  0 )  <->  ( (
c  x.  ( y  x.  0 ) )  +  0 )  =  0 ) )
5244, 51mpbid 210 . . . . . . 7  |-  ( ( ( ( c  e.  RR  /\  ( 0  +  c )  =  0 )  /\  c  =/=  0 )  /\  (
y  e.  RR  /\  ( c  x.  y
)  =  1 ) )  ->  ( (
c  x.  ( y  x.  0 ) )  +  0 )  =  0 )
5322, 52eqtr3d 2472 . . . . . 6  |-  ( ( ( ( c  e.  RR  /\  ( 0  +  c )  =  0 )  /\  c  =/=  0 )  /\  (
y  e.  RR  /\  ( c  x.  y
)  =  1 ) )  ->  ( 0  +  0 )  =  0 )
548, 53rexlimddv 2840 . . . . 5  |-  ( ( ( c  e.  RR  /\  ( 0  +  c )  =  0 )  /\  c  =/=  0
)  ->  ( 0  +  0 )  =  0 )
5554expcom 435 . . . 4  |-  ( c  =/=  0  ->  (
( c  e.  RR  /\  ( 0  +  c )  =  0 )  ->  ( 0  +  0 )  =  0 ) )
566, 55pm2.61ine 2682 . . 3  |-  ( ( c  e.  RR  /\  ( 0  +  c )  =  0 )  ->  ( 0  +  0 )  =  0 )
5756rexlimiva 2831 . 2  |-  ( E. c  e.  RR  (
0  +  c )  =  0  ->  (
0  +  0 )  =  0 )
581, 2, 57mp2b 10 1  |-  ( 0  +  0 )  =  0
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1369    e. wcel 1756    =/= wne 2601   E.wrex 2711  (class class class)co 6086   CCcc 9272   RRcr 9273   0cc0 9274   1c1 9275    + caddc 9277    x. cmul 9279
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2419  ax-sep 4408  ax-nul 4416  ax-pow 4465  ax-pr 4526  ax-un 6367  ax-resscn 9331  ax-1cn 9332  ax-icn 9333  ax-addcl 9334  ax-addrcl 9335  ax-mulcl 9336  ax-mulrcl 9337  ax-mulcom 9338  ax-addass 9339  ax-mulass 9340  ax-distr 9341  ax-i2m1 9342  ax-1ne0 9343  ax-1rid 9344  ax-rnegex 9345  ax-rrecex 9346  ax-cnre 9347  ax-pre-lttri 9348  ax-pre-lttrn 9349  ax-pre-ltadd 9350
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2256  df-mo 2257  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2715  df-rex 2716  df-rab 2719  df-v 2969  df-sbc 3182  df-csb 3284  df-dif 3326  df-un 3328  df-in 3330  df-ss 3337  df-nul 3633  df-if 3787  df-pw 3857  df-sn 3873  df-pr 3875  df-op 3879  df-uni 4087  df-br 4288  df-opab 4346  df-mpt 4347  df-id 4631  df-po 4636  df-so 4637  df-xp 4841  df-rel 4842  df-cnv 4843  df-co 4844  df-dm 4845  df-rn 4846  df-res 4847  df-ima 4848  df-iota 5376  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6089  df-er 7093  df-en 7303  df-dom 7304  df-sdom 7305  df-pnf 9412  df-mnf 9413  df-ltxr 9415
This theorem is referenced by:  mul02lem1  9537  mul02lem2  9538  addid1  9541  addid2  9544  negdii  9684  addgt0  9817  addgegt0  9818  addgtge0  9819  addge0  9820  add20  9843  recextlem2  9959  crne0  10307  10p10e20  10817  ser0  11850  faclbnd4lem3  12063  bcpasc  12089  fsumadd  13207  fsumrelem  13262  arisum  13314  sadcaddlem  13645  sadcadd  13646  sadadd2  13648  bezout  13718  nnnn0modprm0  13866  pcaddlem  13942  4sqlem19  14016  37prm  14140  139prm  14143  163prm  14144  317prm  14145  631prm  14146  1259lem1  14147  1259lem2  14148  1259lem3  14149  1259lem4  14150  2503lem1  14153  2503lem2  14154  2503lem3  14155  4001lem1  14157  4001lem2  14158  4001lem3  14159  4001lem4  14160  sylow1lem1  16088  psrbagaddcl  17415  psrbagaddclOLD  17416  mplcoe3  17522  mplcoe3OLD  17523  cnfld0  17815  reparphti  20544  itg1addlem4  21152  ibladdlem  21272  itgaddlem1  21275  iblabslem  21280  iblabs  21281  coeaddlem  21691  dcubic  22216  log2ublem3  22318  log2ub  22319  chtublem  22525  logfacrlim  22538  dchrisumlem1  22713  chpdifbndlem2  22778  vdgr0  23521  vdgr1a  23527  1kp2ke3k  23604  dip0r  24066  pythi  24201  normpythi  24495  ocsh  24637  0lnfn  25340  lnopeq0i  25362  nlelshi  25415  unierri  25459  probun  26754  fsumcube  28154  ismblfin  28385  itg2addnc  28399  ibladdnclem  28401  itgaddnclem1  28403  itgaddnclem2  28404  iblabsnclem  28408  iblabsnc  28409  iblmulc2nc  28410  ftc1anclem8  28427  ftc1anc  28428  bezoutr1  29282  stoweidlem44  29792
  Copyright terms: Public domain W3C validator