ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ztri3or GIF version

Theorem ztri3or 8288
Description: Integer trichotomy. (Contributed by Jim Kingdon, 14-Mar-2020.)
Assertion
Ref Expression
ztri3or ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁𝑀 = 𝑁𝑁 < 𝑀))

Proof of Theorem ztri3or
StepHypRef Expression
1 zsubcl 8286 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁) ∈ ℤ)
2 ztri3or0 8287 . . 3 ((𝑀𝑁) ∈ ℤ → ((𝑀𝑁) < 0 ∨ (𝑀𝑁) = 0 ∨ 0 < (𝑀𝑁)))
31, 2syl 14 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀𝑁) < 0 ∨ (𝑀𝑁) = 0 ∨ 0 < (𝑀𝑁)))
4 zre 8249 . . . . . 6 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
54adantr 261 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∈ ℝ)
6 zre 8249 . . . . . 6 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
76adantl 262 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℝ)
85, 7posdifd 7523 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁 ↔ 0 < (𝑁𝑀)))
97, 5resubcld 7379 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁𝑀) ∈ ℝ)
109lt0neg2d 7508 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0 < (𝑁𝑀) ↔ -(𝑁𝑀) < 0))
117recnd 7054 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℂ)
125recnd 7054 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∈ ℂ)
1311, 12negsubdi2d 7338 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → -(𝑁𝑀) = (𝑀𝑁))
1413breq1d 3774 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (-(𝑁𝑀) < 0 ↔ (𝑀𝑁) < 0))
158, 10, 143bitrd 203 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁 ↔ (𝑀𝑁) < 0))
1612, 11subeq0ad 7332 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀𝑁) = 0 ↔ 𝑀 = 𝑁))
1716bicomd 129 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 = 𝑁 ↔ (𝑀𝑁) = 0))
187, 5posdifd 7523 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 < 𝑀 ↔ 0 < (𝑀𝑁)))
1915, 17, 183orbi123d 1206 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 < 𝑁𝑀 = 𝑁𝑁 < 𝑀) ↔ ((𝑀𝑁) < 0 ∨ (𝑀𝑁) = 0 ∨ 0 < (𝑀𝑁))))
203, 19mpbird 156 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁𝑀 = 𝑁𝑁 < 𝑀))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 97  w3o 884   = wceq 1243  wcel 1393   class class class wbr 3764  (class class class)co 5512  cr 6888  0cc0 6889   < clt 7060  cmin 7182  -cneg 7183  cz 8245
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-nul 3883  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-iinf 4311  ax-cnex 6975  ax-resscn 6976  ax-1cn 6977  ax-1re 6978  ax-icn 6979  ax-addcl 6980  ax-addrcl 6981  ax-mulcl 6982  ax-addcom 6984  ax-addass 6986  ax-distr 6988  ax-i2m1 6989  ax-0id 6992  ax-rnegex 6993  ax-cnre 6995  ax-pre-ltirr 6996  ax-pre-ltwlin 6997  ax-pre-lttrn 6998  ax-pre-ltadd 7000
This theorem depends on definitions:  df-bi 110  df-dc 743  df-3or 886  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-nel 2207  df-ral 2311  df-rex 2312  df-reu 2313  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-int 3616  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-tr 3855  df-eprel 4026  df-id 4030  df-po 4033  df-iso 4034  df-iord 4103  df-on 4105  df-suc 4108  df-iom 4314  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-riota 5468  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-1st 5767  df-2nd 5768  df-recs 5920  df-irdg 5957  df-1o 6001  df-2o 6002  df-oadd 6005  df-omul 6006  df-er 6106  df-ec 6108  df-qs 6112  df-ni 6402  df-pli 6403  df-mi 6404  df-lti 6405  df-plpq 6442  df-mpq 6443  df-enq 6445  df-nqqs 6446  df-plqqs 6447  df-mqqs 6448  df-1nqqs 6449  df-rq 6450  df-ltnqqs 6451  df-enq0 6522  df-nq0 6523  df-0nq0 6524  df-plq0 6525  df-mq0 6526  df-inp 6564  df-i1p 6565  df-iplp 6566  df-iltp 6568  df-enr 6811  df-nr 6812  df-ltr 6815  df-0r 6816  df-1r 6817  df-0 6896  df-1 6897  df-r 6899  df-lt 6902  df-pnf 7062  df-mnf 7063  df-xr 7064  df-ltxr 7065  df-le 7066  df-sub 7184  df-neg 7185  df-inn 7915  df-n0 8182  df-z 8246
This theorem is referenced by:  zletric  8289  zlelttric  8290  zltnle  8291  zleloe  8292  zapne  8315  zdceq  8316  zdcle  8317  zdclt  8318  uzm1  8503  qtri3or  9098
  Copyright terms: Public domain W3C validator