ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uneqdifeqim GIF version

Theorem uneqdifeqim 3308
Description: Two ways that 𝐴 and 𝐵 can "partition" 𝐶 (when 𝐴 and 𝐵 don't overlap and 𝐴 is a part of 𝐶). In classical logic, the second implication would be a biconditional. (Contributed by Jim Kingdon, 4-Aug-2018.)
Assertion
Ref Expression
uneqdifeqim ((𝐴𝐶 ∧ (𝐴𝐵) = ∅) → ((𝐴𝐵) = 𝐶 → (𝐶𝐴) = 𝐵))

Proof of Theorem uneqdifeqim
StepHypRef Expression
1 uncom 3087 . . . 4 (𝐵𝐴) = (𝐴𝐵)
2 eqtr 2057 . . . . . 6 (((𝐵𝐴) = (𝐴𝐵) ∧ (𝐴𝐵) = 𝐶) → (𝐵𝐴) = 𝐶)
32eqcomd 2045 . . . . 5 (((𝐵𝐴) = (𝐴𝐵) ∧ (𝐴𝐵) = 𝐶) → 𝐶 = (𝐵𝐴))
4 difeq1 3055 . . . . . 6 (𝐶 = (𝐵𝐴) → (𝐶𝐴) = ((𝐵𝐴) ∖ 𝐴))
5 difun2 3302 . . . . . 6 ((𝐵𝐴) ∖ 𝐴) = (𝐵𝐴)
6 eqtr 2057 . . . . . . 7 (((𝐶𝐴) = ((𝐵𝐴) ∖ 𝐴) ∧ ((𝐵𝐴) ∖ 𝐴) = (𝐵𝐴)) → (𝐶𝐴) = (𝐵𝐴))
7 incom 3129 . . . . . . . . . 10 (𝐴𝐵) = (𝐵𝐴)
87eqeq1i 2047 . . . . . . . . 9 ((𝐴𝐵) = ∅ ↔ (𝐵𝐴) = ∅)
9 disj3 3272 . . . . . . . . 9 ((𝐵𝐴) = ∅ ↔ 𝐵 = (𝐵𝐴))
108, 9bitri 173 . . . . . . . 8 ((𝐴𝐵) = ∅ ↔ 𝐵 = (𝐵𝐴))
11 eqtr 2057 . . . . . . . . . 10 (((𝐶𝐴) = (𝐵𝐴) ∧ (𝐵𝐴) = 𝐵) → (𝐶𝐴) = 𝐵)
1211expcom 109 . . . . . . . . 9 ((𝐵𝐴) = 𝐵 → ((𝐶𝐴) = (𝐵𝐴) → (𝐶𝐴) = 𝐵))
1312eqcoms 2043 . . . . . . . 8 (𝐵 = (𝐵𝐴) → ((𝐶𝐴) = (𝐵𝐴) → (𝐶𝐴) = 𝐵))
1410, 13sylbi 114 . . . . . . 7 ((𝐴𝐵) = ∅ → ((𝐶𝐴) = (𝐵𝐴) → (𝐶𝐴) = 𝐵))
156, 14syl5com 26 . . . . . 6 (((𝐶𝐴) = ((𝐵𝐴) ∖ 𝐴) ∧ ((𝐵𝐴) ∖ 𝐴) = (𝐵𝐴)) → ((𝐴𝐵) = ∅ → (𝐶𝐴) = 𝐵))
164, 5, 15sylancl 392 . . . . 5 (𝐶 = (𝐵𝐴) → ((𝐴𝐵) = ∅ → (𝐶𝐴) = 𝐵))
173, 16syl 14 . . . 4 (((𝐵𝐴) = (𝐴𝐵) ∧ (𝐴𝐵) = 𝐶) → ((𝐴𝐵) = ∅ → (𝐶𝐴) = 𝐵))
181, 17mpan 400 . . 3 ((𝐴𝐵) = 𝐶 → ((𝐴𝐵) = ∅ → (𝐶𝐴) = 𝐵))
1918com12 27 . 2 ((𝐴𝐵) = ∅ → ((𝐴𝐵) = 𝐶 → (𝐶𝐴) = 𝐵))
2019adantl 262 1 ((𝐴𝐶 ∧ (𝐴𝐵) = ∅) → ((𝐴𝐵) = 𝐶 → (𝐶𝐴) = 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 97   = wceq 1243  cdif 2914  cun 2915  cin 2916  wss 2917  c0 3224
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022
This theorem depends on definitions:  df-bi 110  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rab 2315  df-v 2559  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator