ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  snexg GIF version

Theorem snexg 3936
Description: A singleton whose element exists is a set. The 𝐴 ∈ V case of Theorem 7.12 of [Quine] p. 51, proved using only Extensionality, Power Set, and Separation. Replacement is not needed. (Contributed by Jim Kingdon, 1-Sep-2018.)
Assertion
Ref Expression
snexg (𝐴𝑉 → {𝐴} ∈ V)

Proof of Theorem snexg
StepHypRef Expression
1 pwexg 3933 . 2 (𝐴𝑉 → 𝒫 𝐴 ∈ V)
2 snsspw 3535 . . 3 {𝐴} ⊆ 𝒫 𝐴
3 ssexg 3896 . . 3 (({𝐴} ⊆ 𝒫 𝐴 ∧ 𝒫 𝐴 ∈ V) → {𝐴} ∈ V)
42, 3mpan 400 . 2 (𝒫 𝐴 ∈ V → {𝐴} ∈ V)
51, 4syl 14 1 (𝐴𝑉 → {𝐴} ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 1393  Vcvv 2557  wss 2917  𝒫 cpw 3359  {csn 3375
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927
This theorem depends on definitions:  df-bi 110  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-v 2559  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381
This theorem is referenced by:  snex  3937  opexg  3964  tpexg  4179  opabex3d  5748  opabex3  5749  mpt2exxg  5833  cnvf1o  5846  brtpos2  5866  tfr0  5937  tfrlemisucaccv  5939  tfrlemibxssdm  5941  tfrlemibfn  5942  xpsnen2g  6303  iseqid3  9245  climconst2  9812
  Copyright terms: Public domain W3C validator