ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbn GIF version

Theorem sbn 1826
Description: Negation inside and outside of substitution are equivalent. (Contributed by NM, 5-Aug-1993.) (Proof rewritten by Jim Kingdon, 3-Feb-2018.)
Assertion
Ref Expression
sbn ([𝑦 / 𝑥] ¬ 𝜑 ↔ ¬ [𝑦 / 𝑥]𝜑)

Proof of Theorem sbn
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 sbnv 1768 . . . 4 ([𝑧 / 𝑥] ¬ 𝜑 ↔ ¬ [𝑧 / 𝑥]𝜑)
21sbbii 1648 . . 3 ([𝑦 / 𝑧][𝑧 / 𝑥] ¬ 𝜑 ↔ [𝑦 / 𝑧] ¬ [𝑧 / 𝑥]𝜑)
3 sbnv 1768 . . 3 ([𝑦 / 𝑧] ¬ [𝑧 / 𝑥]𝜑 ↔ ¬ [𝑦 / 𝑧][𝑧 / 𝑥]𝜑)
42, 3bitri 173 . 2 ([𝑦 / 𝑧][𝑧 / 𝑥] ¬ 𝜑 ↔ ¬ [𝑦 / 𝑧][𝑧 / 𝑥]𝜑)
5 ax-17 1419 . . . 4 (𝜑 → ∀𝑧𝜑)
65hbn 1544 . . 3 𝜑 → ∀𝑧 ¬ 𝜑)
76sbco2v 1821 . 2 ([𝑦 / 𝑧][𝑧 / 𝑥] ¬ 𝜑 ↔ [𝑦 / 𝑥] ¬ 𝜑)
85sbco2v 1821 . . 3 ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑)
98notbii 594 . 2 (¬ [𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ↔ ¬ [𝑦 / 𝑥]𝜑)
104, 7, 93bitr3i 199 1 ([𝑦 / 𝑥] ¬ 𝜑 ↔ ¬ [𝑦 / 𝑥]𝜑)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wb 98  [wsb 1645
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428
This theorem depends on definitions:  df-bi 110  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646
This theorem is referenced by:  sbcng  2803  difab  3206  rabeq0  3247  abeq0  3248
  Copyright terms: Public domain W3C validator