ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbcomxyyz GIF version

Theorem sbcomxyyz 1846
Description: Version of sbcom 1849 with distinct variable constraints between 𝑥 and 𝑦, and 𝑦 and 𝑧. (Contributed by Jim Kingdon, 21-Mar-2018.)
Assertion
Ref Expression
sbcomxyyz ([𝑦 / 𝑧][𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥][𝑦 / 𝑧]𝜑)
Distinct variable groups:   𝑥,𝑦   𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)

Proof of Theorem sbcomxyyz
StepHypRef Expression
1 ax-bndl 1399 . 2 (∀𝑧 𝑧 = 𝑥 ∨ (∀𝑧 𝑧 = 𝑦 ∨ ∀𝑥𝑧(𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦)))
2 ax-ial 1427 . . . . 5 (∀𝑧 𝑧 = 𝑥 → ∀𝑧𝑧 𝑧 = 𝑥)
3 drsb1 1680 . . . . 5 (∀𝑧 𝑧 = 𝑥 → ([𝑦 / 𝑧]𝜑 ↔ [𝑦 / 𝑥]𝜑))
42, 3sbbid 1726 . . . 4 (∀𝑧 𝑧 = 𝑥 → ([𝑦 / 𝑧][𝑦 / 𝑧]𝜑 ↔ [𝑦 / 𝑧][𝑦 / 𝑥]𝜑))
5 drsb1 1680 . . . 4 (∀𝑧 𝑧 = 𝑥 → ([𝑦 / 𝑧][𝑦 / 𝑧]𝜑 ↔ [𝑦 / 𝑥][𝑦 / 𝑧]𝜑))
64, 5bitr3d 179 . . 3 (∀𝑧 𝑧 = 𝑥 → ([𝑦 / 𝑧][𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥][𝑦 / 𝑧]𝜑))
7 sbequ12 1654 . . . . . 6 (𝑧 = 𝑦 → ([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑧][𝑦 / 𝑥]𝜑))
87sps 1430 . . . . 5 (∀𝑧 𝑧 = 𝑦 → ([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑧][𝑦 / 𝑥]𝜑))
9 hbae 1606 . . . . . 6 (∀𝑧 𝑧 = 𝑦 → ∀𝑥𝑧 𝑧 = 𝑦)
10 sbequ12 1654 . . . . . . 7 (𝑧 = 𝑦 → (𝜑 ↔ [𝑦 / 𝑧]𝜑))
1110sps 1430 . . . . . 6 (∀𝑧 𝑧 = 𝑦 → (𝜑 ↔ [𝑦 / 𝑧]𝜑))
129, 11sbbid 1726 . . . . 5 (∀𝑧 𝑧 = 𝑦 → ([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥][𝑦 / 𝑧]𝜑))
138, 12bitr3d 179 . . . 4 (∀𝑧 𝑧 = 𝑦 → ([𝑦 / 𝑧][𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥][𝑦 / 𝑧]𝜑))
14 df-nf 1350 . . . . . 6 (Ⅎ𝑧 𝑥 = 𝑦 ↔ ∀𝑧(𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦))
1514albii 1359 . . . . 5 (∀𝑥𝑧 𝑥 = 𝑦 ↔ ∀𝑥𝑧(𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦))
16 ax-ial 1427 . . . . . . 7 (∀𝑥𝑧 𝑥 = 𝑦 → ∀𝑥𝑥𝑧 𝑥 = 𝑦)
17 nfs1v 1815 . . . . . . . . . 10 𝑥[𝑦 / 𝑥]𝜑
1817nfsb 1822 . . . . . . . . 9 𝑥[𝑦 / 𝑧][𝑦 / 𝑥]𝜑
1918a1i 9 . . . . . . . 8 (∀𝑥𝑧 𝑥 = 𝑦 → Ⅎ𝑥[𝑦 / 𝑧][𝑦 / 𝑥]𝜑)
2019nfrd 1413 . . . . . . 7 (∀𝑥𝑧 𝑥 = 𝑦 → ([𝑦 / 𝑧][𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑧][𝑦 / 𝑥]𝜑))
21 nfr 1411 . . . . . . . . 9 (Ⅎ𝑧 𝑥 = 𝑦 → (𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦))
22 nfnf1 1436 . . . . . . . . . . . . 13 𝑧𝑧 𝑥 = 𝑦
23 nfa1 1434 . . . . . . . . . . . . 13 𝑧𝑧 𝑥 = 𝑦
2422, 23nfan 1457 . . . . . . . . . . . 12 𝑧(Ⅎ𝑧 𝑥 = 𝑦 ∧ ∀𝑧 𝑥 = 𝑦)
2524nfri 1412 . . . . . . . . . . 11 ((Ⅎ𝑧 𝑥 = 𝑦 ∧ ∀𝑧 𝑥 = 𝑦) → ∀𝑧(Ⅎ𝑧 𝑥 = 𝑦 ∧ ∀𝑧 𝑥 = 𝑦))
26 nfs1v 1815 . . . . . . . . . . . . 13 𝑧[𝑦 / 𝑧][𝑦 / 𝑥]𝜑
2726a1i 9 . . . . . . . . . . . 12 ((Ⅎ𝑧 𝑥 = 𝑦 ∧ ∀𝑧 𝑥 = 𝑦) → Ⅎ𝑧[𝑦 / 𝑧][𝑦 / 𝑥]𝜑)
2827nfrd 1413 . . . . . . . . . . 11 ((Ⅎ𝑧 𝑥 = 𝑦 ∧ ∀𝑧 𝑥 = 𝑦) → ([𝑦 / 𝑧][𝑦 / 𝑥]𝜑 → ∀𝑧[𝑦 / 𝑧][𝑦 / 𝑥]𝜑))
29 sbequ12 1654 . . . . . . . . . . . . . . 15 (𝑥 = 𝑦 → (𝜑 ↔ [𝑦 / 𝑥]𝜑))
3029, 7sylan9bb 435 . . . . . . . . . . . . . 14 ((𝑥 = 𝑦𝑧 = 𝑦) → (𝜑 ↔ [𝑦 / 𝑧][𝑦 / 𝑥]𝜑))
3130ex 108 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → (𝑧 = 𝑦 → (𝜑 ↔ [𝑦 / 𝑧][𝑦 / 𝑥]𝜑)))
3231sps 1430 . . . . . . . . . . . 12 (∀𝑧 𝑥 = 𝑦 → (𝑧 = 𝑦 → (𝜑 ↔ [𝑦 / 𝑧][𝑦 / 𝑥]𝜑)))
3332adantl 262 . . . . . . . . . . 11 ((Ⅎ𝑧 𝑥 = 𝑦 ∧ ∀𝑧 𝑥 = 𝑦) → (𝑧 = 𝑦 → (𝜑 ↔ [𝑦 / 𝑧][𝑦 / 𝑥]𝜑)))
3425, 28, 33sbiedh 1670 . . . . . . . . . 10 ((Ⅎ𝑧 𝑥 = 𝑦 ∧ ∀𝑧 𝑥 = 𝑦) → ([𝑦 / 𝑧]𝜑 ↔ [𝑦 / 𝑧][𝑦 / 𝑥]𝜑))
3534ex 108 . . . . . . . . 9 (Ⅎ𝑧 𝑥 = 𝑦 → (∀𝑧 𝑥 = 𝑦 → ([𝑦 / 𝑧]𝜑 ↔ [𝑦 / 𝑧][𝑦 / 𝑥]𝜑)))
3621, 35syld 40 . . . . . . . 8 (Ⅎ𝑧 𝑥 = 𝑦 → (𝑥 = 𝑦 → ([𝑦 / 𝑧]𝜑 ↔ [𝑦 / 𝑧][𝑦 / 𝑥]𝜑)))
3736sps 1430 . . . . . . 7 (∀𝑥𝑧 𝑥 = 𝑦 → (𝑥 = 𝑦 → ([𝑦 / 𝑧]𝜑 ↔ [𝑦 / 𝑧][𝑦 / 𝑥]𝜑)))
3816, 20, 37sbiedh 1670 . . . . . 6 (∀𝑥𝑧 𝑥 = 𝑦 → ([𝑦 / 𝑥][𝑦 / 𝑧]𝜑 ↔ [𝑦 / 𝑧][𝑦 / 𝑥]𝜑))
3938bicomd 129 . . . . 5 (∀𝑥𝑧 𝑥 = 𝑦 → ([𝑦 / 𝑧][𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥][𝑦 / 𝑧]𝜑))
4015, 39sylbir 125 . . . 4 (∀𝑥𝑧(𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦) → ([𝑦 / 𝑧][𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥][𝑦 / 𝑧]𝜑))
4113, 40jaoi 636 . . 3 ((∀𝑧 𝑧 = 𝑦 ∨ ∀𝑥𝑧(𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦)) → ([𝑦 / 𝑧][𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥][𝑦 / 𝑧]𝜑))
426, 41jaoi 636 . 2 ((∀𝑧 𝑧 = 𝑥 ∨ (∀𝑧 𝑧 = 𝑦 ∨ ∀𝑥𝑧(𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦))) → ([𝑦 / 𝑧][𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥][𝑦 / 𝑧]𝜑))
431, 42ax-mp 7 1 ([𝑦 / 𝑧][𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥][𝑦 / 𝑧]𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 97  wb 98  wo 629  wal 1241  wnf 1349  [wsb 1645
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428
This theorem depends on definitions:  df-bi 110  df-nf 1350  df-sb 1646
This theorem is referenced by:  sbco3xzyz  1847
  Copyright terms: Public domain W3C validator