ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qtri3or GIF version

Theorem qtri3or 9098
Description: Rational trichotomy. (Contributed by Jim Kingdon, 6-Oct-2021.)
Assertion
Ref Expression
qtri3or ((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) → (𝑀 < 𝑁𝑀 = 𝑁𝑁 < 𝑀))

Proof of Theorem qtri3or
Dummy variables 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elq 8557 . . . 4 (𝑁 ∈ ℚ ↔ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℕ 𝑁 = (𝑧 / 𝑤))
21biimpi 113 . . 3 (𝑁 ∈ ℚ → ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℕ 𝑁 = (𝑧 / 𝑤))
32adantl 262 . 2 ((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) → ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℕ 𝑁 = (𝑧 / 𝑤))
4 elq 8557 . . . . . . 7 (𝑀 ∈ ℚ ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝑀 = (𝑥 / 𝑦))
54biimpi 113 . . . . . 6 (𝑀 ∈ ℚ → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝑀 = (𝑥 / 𝑦))
65ad3antrrr 461 . . . . 5 ((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝑀 = (𝑥 / 𝑦))
7 simplrl 487 . . . . . . . . . 10 ((((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑀 = (𝑥 / 𝑦)) → 𝑥 ∈ ℤ)
8 simplrr 488 . . . . . . . . . . . 12 ((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) → 𝑤 ∈ ℕ)
98ad2antrr 457 . . . . . . . . . . 11 ((((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑀 = (𝑥 / 𝑦)) → 𝑤 ∈ ℕ)
109nnzd 8359 . . . . . . . . . 10 ((((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑀 = (𝑥 / 𝑦)) → 𝑤 ∈ ℤ)
117, 10zmulcld 8366 . . . . . . . . 9 ((((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑀 = (𝑥 / 𝑦)) → (𝑥 · 𝑤) ∈ ℤ)
12 simplrl 487 . . . . . . . . . . 11 ((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) → 𝑧 ∈ ℤ)
1312ad2antrr 457 . . . . . . . . . 10 ((((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑀 = (𝑥 / 𝑦)) → 𝑧 ∈ ℤ)
14 simplrr 488 . . . . . . . . . . 11 ((((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑀 = (𝑥 / 𝑦)) → 𝑦 ∈ ℕ)
1514nnzd 8359 . . . . . . . . . 10 ((((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑀 = (𝑥 / 𝑦)) → 𝑦 ∈ ℤ)
1613, 15zmulcld 8366 . . . . . . . . 9 ((((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑀 = (𝑥 / 𝑦)) → (𝑧 · 𝑦) ∈ ℤ)
17 ztri3or 8288 . . . . . . . . 9 (((𝑥 · 𝑤) ∈ ℤ ∧ (𝑧 · 𝑦) ∈ ℤ) → ((𝑥 · 𝑤) < (𝑧 · 𝑦) ∨ (𝑥 · 𝑤) = (𝑧 · 𝑦) ∨ (𝑧 · 𝑦) < (𝑥 · 𝑤)))
1811, 16, 17syl2anc 391 . . . . . . . 8 ((((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑀 = (𝑥 / 𝑦)) → ((𝑥 · 𝑤) < (𝑧 · 𝑦) ∨ (𝑥 · 𝑤) = (𝑧 · 𝑦) ∨ (𝑧 · 𝑦) < (𝑥 · 𝑤)))
19 simpllr 486 . . . . . . . . . . 11 ((((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑀 = (𝑥 / 𝑦)) → 𝑁 = (𝑧 / 𝑤))
2019breq2d 3776 . . . . . . . . . 10 ((((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑀 = (𝑥 / 𝑦)) → ((𝑥 / 𝑦) < 𝑁 ↔ (𝑥 / 𝑦) < (𝑧 / 𝑤)))
21 breq1 3767 . . . . . . . . . . 11 (𝑀 = (𝑥 / 𝑦) → (𝑀 < 𝑁 ↔ (𝑥 / 𝑦) < 𝑁))
2221adantl 262 . . . . . . . . . 10 ((((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑀 = (𝑥 / 𝑦)) → (𝑀 < 𝑁 ↔ (𝑥 / 𝑦) < 𝑁))
237zred 8360 . . . . . . . . . . 11 ((((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑀 = (𝑥 / 𝑦)) → 𝑥 ∈ ℝ)
249nnrpd 8621 . . . . . . . . . . 11 ((((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑀 = (𝑥 / 𝑦)) → 𝑤 ∈ ℝ+)
2513zred 8360 . . . . . . . . . . 11 ((((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑀 = (𝑥 / 𝑦)) → 𝑧 ∈ ℝ)
2614nnrpd 8621 . . . . . . . . . . 11 ((((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑀 = (𝑥 / 𝑦)) → 𝑦 ∈ ℝ+)
2723, 24, 25, 26lt2mul2divd 8685 . . . . . . . . . 10 ((((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑀 = (𝑥 / 𝑦)) → ((𝑥 · 𝑤) < (𝑧 · 𝑦) ↔ (𝑥 / 𝑦) < (𝑧 / 𝑤)))
2820, 22, 273bitr4rd 210 . . . . . . . . 9 ((((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑀 = (𝑥 / 𝑦)) → ((𝑥 · 𝑤) < (𝑧 · 𝑦) ↔ 𝑀 < 𝑁))
29 simpr 103 . . . . . . . . . . 11 ((((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑀 = (𝑥 / 𝑦)) → 𝑀 = (𝑥 / 𝑦))
3029, 19eqeq12d 2054 . . . . . . . . . 10 ((((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑀 = (𝑥 / 𝑦)) → (𝑀 = 𝑁 ↔ (𝑥 / 𝑦) = (𝑧 / 𝑤)))
317zcnd 8361 . . . . . . . . . . 11 ((((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑀 = (𝑥 / 𝑦)) → 𝑥 ∈ ℂ)
3213zcnd 8361 . . . . . . . . . . 11 ((((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑀 = (𝑥 / 𝑦)) → 𝑧 ∈ ℂ)
3314nncnd 7928 . . . . . . . . . . . 12 ((((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑀 = (𝑥 / 𝑦)) → 𝑦 ∈ ℂ)
3414nnap0d 7959 . . . . . . . . . . . 12 ((((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑀 = (𝑥 / 𝑦)) → 𝑦 # 0)
3533, 34jca 290 . . . . . . . . . . 11 ((((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑀 = (𝑥 / 𝑦)) → (𝑦 ∈ ℂ ∧ 𝑦 # 0))
369nncnd 7928 . . . . . . . . . . . 12 ((((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑀 = (𝑥 / 𝑦)) → 𝑤 ∈ ℂ)
379nnap0d 7959 . . . . . . . . . . . 12 ((((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑀 = (𝑥 / 𝑦)) → 𝑤 # 0)
3836, 37jca 290 . . . . . . . . . . 11 ((((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑀 = (𝑥 / 𝑦)) → (𝑤 ∈ ℂ ∧ 𝑤 # 0))
39 divmuleqap 7693 . . . . . . . . . . 11 (((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ) ∧ ((𝑦 ∈ ℂ ∧ 𝑦 # 0) ∧ (𝑤 ∈ ℂ ∧ 𝑤 # 0))) → ((𝑥 / 𝑦) = (𝑧 / 𝑤) ↔ (𝑥 · 𝑤) = (𝑧 · 𝑦)))
4031, 32, 35, 38, 39syl22anc 1136 . . . . . . . . . 10 ((((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑀 = (𝑥 / 𝑦)) → ((𝑥 / 𝑦) = (𝑧 / 𝑤) ↔ (𝑥 · 𝑤) = (𝑧 · 𝑦)))
4130, 40bitr2d 178 . . . . . . . . 9 ((((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑀 = (𝑥 / 𝑦)) → ((𝑥 · 𝑤) = (𝑧 · 𝑦) ↔ 𝑀 = 𝑁))
4225, 26, 23, 24lt2mul2divd 8685 . . . . . . . . . 10 ((((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑀 = (𝑥 / 𝑦)) → ((𝑧 · 𝑦) < (𝑥 · 𝑤) ↔ (𝑧 / 𝑤) < (𝑥 / 𝑦)))
4319, 29breq12d 3777 . . . . . . . . . 10 ((((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑀 = (𝑥 / 𝑦)) → (𝑁 < 𝑀 ↔ (𝑧 / 𝑤) < (𝑥 / 𝑦)))
4442, 43bitr4d 180 . . . . . . . . 9 ((((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑀 = (𝑥 / 𝑦)) → ((𝑧 · 𝑦) < (𝑥 · 𝑤) ↔ 𝑁 < 𝑀))
4528, 41, 443orbi123d 1206 . . . . . . . 8 ((((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑀 = (𝑥 / 𝑦)) → (((𝑥 · 𝑤) < (𝑧 · 𝑦) ∨ (𝑥 · 𝑤) = (𝑧 · 𝑦) ∨ (𝑧 · 𝑦) < (𝑥 · 𝑤)) ↔ (𝑀 < 𝑁𝑀 = 𝑁𝑁 < 𝑀)))
4618, 45mpbid 135 . . . . . . 7 ((((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑀 = (𝑥 / 𝑦)) → (𝑀 < 𝑁𝑀 = 𝑁𝑁 < 𝑀))
4746ex 108 . . . . . 6 (((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) → (𝑀 = (𝑥 / 𝑦) → (𝑀 < 𝑁𝑀 = 𝑁𝑁 < 𝑀)))
4847rexlimdvva 2440 . . . . 5 ((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝑀 = (𝑥 / 𝑦) → (𝑀 < 𝑁𝑀 = 𝑁𝑁 < 𝑀)))
496, 48mpd 13 . . . 4 ((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) → (𝑀 < 𝑁𝑀 = 𝑁𝑁 < 𝑀))
5049ex 108 . . 3 (((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) → (𝑁 = (𝑧 / 𝑤) → (𝑀 < 𝑁𝑀 = 𝑁𝑁 < 𝑀)))
5150rexlimdvva 2440 . 2 ((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) → (∃𝑧 ∈ ℤ ∃𝑤 ∈ ℕ 𝑁 = (𝑧 / 𝑤) → (𝑀 < 𝑁𝑀 = 𝑁𝑁 < 𝑀)))
523, 51mpd 13 1 ((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) → (𝑀 < 𝑁𝑀 = 𝑁𝑁 < 𝑀))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 97  wb 98  w3o 884   = wceq 1243  wcel 1393  wrex 2307   class class class wbr 3764  (class class class)co 5512  cc 6887  0cc0 6889   · cmul 6894   < clt 7060   # cap 7572   / cdiv 7651  cn 7914  cz 8245  cq 8554
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-nul 3883  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-iinf 4311  ax-cnex 6975  ax-resscn 6976  ax-1cn 6977  ax-1re 6978  ax-icn 6979  ax-addcl 6980  ax-addrcl 6981  ax-mulcl 6982  ax-mulrcl 6983  ax-addcom 6984  ax-mulcom 6985  ax-addass 6986  ax-mulass 6987  ax-distr 6988  ax-i2m1 6989  ax-1rid 6991  ax-0id 6992  ax-rnegex 6993  ax-precex 6994  ax-cnre 6995  ax-pre-ltirr 6996  ax-pre-ltwlin 6997  ax-pre-lttrn 6998  ax-pre-apti 6999  ax-pre-ltadd 7000  ax-pre-mulgt0 7001  ax-pre-mulext 7002
This theorem depends on definitions:  df-bi 110  df-dc 743  df-3or 886  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-nel 2207  df-ral 2311  df-rex 2312  df-reu 2313  df-rmo 2314  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-int 3616  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-tr 3855  df-eprel 4026  df-id 4030  df-po 4033  df-iso 4034  df-iord 4103  df-on 4105  df-suc 4108  df-iom 4314  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-riota 5468  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-1st 5767  df-2nd 5768  df-recs 5920  df-irdg 5957  df-1o 6001  df-2o 6002  df-oadd 6005  df-omul 6006  df-er 6106  df-ec 6108  df-qs 6112  df-ni 6402  df-pli 6403  df-mi 6404  df-lti 6405  df-plpq 6442  df-mpq 6443  df-enq 6445  df-nqqs 6446  df-plqqs 6447  df-mqqs 6448  df-1nqqs 6449  df-rq 6450  df-ltnqqs 6451  df-enq0 6522  df-nq0 6523  df-0nq0 6524  df-plq0 6525  df-mq0 6526  df-inp 6564  df-i1p 6565  df-iplp 6566  df-iltp 6568  df-enr 6811  df-nr 6812  df-ltr 6815  df-0r 6816  df-1r 6817  df-0 6896  df-1 6897  df-r 6899  df-lt 6902  df-pnf 7062  df-mnf 7063  df-xr 7064  df-ltxr 7065  df-le 7066  df-sub 7184  df-neg 7185  df-reap 7566  df-ap 7573  df-div 7652  df-inn 7915  df-n0 8182  df-z 8246  df-q 8555  df-rp 8584
This theorem is referenced by:  qletric  9099  qlelttric  9100  qltnle  9101  qdceq  9102
  Copyright terms: Public domain W3C validator