ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qbtwnz GIF version

Theorem qbtwnz 9106
Description: There is a unique greatest integer less than or equal to a rational number. (Contributed by Jim Kingdon, 8-Oct-2021.)
Assertion
Ref Expression
qbtwnz (𝐴 ∈ ℚ → ∃!𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1)))
Distinct variable group:   𝑥,𝐴

Proof of Theorem qbtwnz
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 qbtwnzlemex 9105 . 2 (𝐴 ∈ ℚ → ∃𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1)))
2 simplrl 487 . . . . . . . . 9 (((𝐴 ∈ ℚ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ ((𝑥𝐴𝐴 < (𝑥 + 1)) ∧ (𝑦𝐴𝐴 < (𝑦 + 1)))) → 𝑥 ∈ ℤ)
32zred 8360 . . . . . . . 8 (((𝐴 ∈ ℚ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ ((𝑥𝐴𝐴 < (𝑥 + 1)) ∧ (𝑦𝐴𝐴 < (𝑦 + 1)))) → 𝑥 ∈ ℝ)
4 qre 8560 . . . . . . . . 9 (𝐴 ∈ ℚ → 𝐴 ∈ ℝ)
54ad2antrr 457 . . . . . . . 8 (((𝐴 ∈ ℚ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ ((𝑥𝐴𝐴 < (𝑥 + 1)) ∧ (𝑦𝐴𝐴 < (𝑦 + 1)))) → 𝐴 ∈ ℝ)
6 simplrr 488 . . . . . . . . . 10 (((𝐴 ∈ ℚ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ ((𝑥𝐴𝐴 < (𝑥 + 1)) ∧ (𝑦𝐴𝐴 < (𝑦 + 1)))) → 𝑦 ∈ ℤ)
76zred 8360 . . . . . . . . 9 (((𝐴 ∈ ℚ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ ((𝑥𝐴𝐴 < (𝑥 + 1)) ∧ (𝑦𝐴𝐴 < (𝑦 + 1)))) → 𝑦 ∈ ℝ)
8 1red 7042 . . . . . . . . 9 (((𝐴 ∈ ℚ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ ((𝑥𝐴𝐴 < (𝑥 + 1)) ∧ (𝑦𝐴𝐴 < (𝑦 + 1)))) → 1 ∈ ℝ)
97, 8readdcld 7055 . . . . . . . 8 (((𝐴 ∈ ℚ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ ((𝑥𝐴𝐴 < (𝑥 + 1)) ∧ (𝑦𝐴𝐴 < (𝑦 + 1)))) → (𝑦 + 1) ∈ ℝ)
10 simprll 489 . . . . . . . 8 (((𝐴 ∈ ℚ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ ((𝑥𝐴𝐴 < (𝑥 + 1)) ∧ (𝑦𝐴𝐴 < (𝑦 + 1)))) → 𝑥𝐴)
11 simprrr 492 . . . . . . . 8 (((𝐴 ∈ ℚ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ ((𝑥𝐴𝐴 < (𝑥 + 1)) ∧ (𝑦𝐴𝐴 < (𝑦 + 1)))) → 𝐴 < (𝑦 + 1))
123, 5, 9, 10, 11lelttrd 7139 . . . . . . 7 (((𝐴 ∈ ℚ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ ((𝑥𝐴𝐴 < (𝑥 + 1)) ∧ (𝑦𝐴𝐴 < (𝑦 + 1)))) → 𝑥 < (𝑦 + 1))
13 zleltp1 8299 . . . . . . . 8 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝑥𝑦𝑥 < (𝑦 + 1)))
142, 6, 13syl2anc 391 . . . . . . 7 (((𝐴 ∈ ℚ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ ((𝑥𝐴𝐴 < (𝑥 + 1)) ∧ (𝑦𝐴𝐴 < (𝑦 + 1)))) → (𝑥𝑦𝑥 < (𝑦 + 1)))
1512, 14mpbird 156 . . . . . 6 (((𝐴 ∈ ℚ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ ((𝑥𝐴𝐴 < (𝑥 + 1)) ∧ (𝑦𝐴𝐴 < (𝑦 + 1)))) → 𝑥𝑦)
163, 8readdcld 7055 . . . . . . . 8 (((𝐴 ∈ ℚ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ ((𝑥𝐴𝐴 < (𝑥 + 1)) ∧ (𝑦𝐴𝐴 < (𝑦 + 1)))) → (𝑥 + 1) ∈ ℝ)
17 simprrl 491 . . . . . . . 8 (((𝐴 ∈ ℚ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ ((𝑥𝐴𝐴 < (𝑥 + 1)) ∧ (𝑦𝐴𝐴 < (𝑦 + 1)))) → 𝑦𝐴)
18 simprlr 490 . . . . . . . 8 (((𝐴 ∈ ℚ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ ((𝑥𝐴𝐴 < (𝑥 + 1)) ∧ (𝑦𝐴𝐴 < (𝑦 + 1)))) → 𝐴 < (𝑥 + 1))
197, 5, 16, 17, 18lelttrd 7139 . . . . . . 7 (((𝐴 ∈ ℚ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ ((𝑥𝐴𝐴 < (𝑥 + 1)) ∧ (𝑦𝐴𝐴 < (𝑦 + 1)))) → 𝑦 < (𝑥 + 1))
20 zleltp1 8299 . . . . . . . 8 ((𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝑦𝑥𝑦 < (𝑥 + 1)))
216, 2, 20syl2anc 391 . . . . . . 7 (((𝐴 ∈ ℚ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ ((𝑥𝐴𝐴 < (𝑥 + 1)) ∧ (𝑦𝐴𝐴 < (𝑦 + 1)))) → (𝑦𝑥𝑦 < (𝑥 + 1)))
2219, 21mpbird 156 . . . . . 6 (((𝐴 ∈ ℚ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ ((𝑥𝐴𝐴 < (𝑥 + 1)) ∧ (𝑦𝐴𝐴 < (𝑦 + 1)))) → 𝑦𝑥)
233, 7letri3d 7133 . . . . . 6 (((𝐴 ∈ ℚ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ ((𝑥𝐴𝐴 < (𝑥 + 1)) ∧ (𝑦𝐴𝐴 < (𝑦 + 1)))) → (𝑥 = 𝑦 ↔ (𝑥𝑦𝑦𝑥)))
2415, 22, 23mpbir2and 851 . . . . 5 (((𝐴 ∈ ℚ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ ((𝑥𝐴𝐴 < (𝑥 + 1)) ∧ (𝑦𝐴𝐴 < (𝑦 + 1)))) → 𝑥 = 𝑦)
2524ex 108 . . . 4 ((𝐴 ∈ ℚ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (((𝑥𝐴𝐴 < (𝑥 + 1)) ∧ (𝑦𝐴𝐴 < (𝑦 + 1))) → 𝑥 = 𝑦))
2625ralrimivva 2401 . . 3 (𝐴 ∈ ℚ → ∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ (((𝑥𝐴𝐴 < (𝑥 + 1)) ∧ (𝑦𝐴𝐴 < (𝑦 + 1))) → 𝑥 = 𝑦))
27 breq1 3767 . . . . 5 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
28 oveq1 5519 . . . . . 6 (𝑥 = 𝑦 → (𝑥 + 1) = (𝑦 + 1))
2928breq2d 3776 . . . . 5 (𝑥 = 𝑦 → (𝐴 < (𝑥 + 1) ↔ 𝐴 < (𝑦 + 1)))
3027, 29anbi12d 442 . . . 4 (𝑥 = 𝑦 → ((𝑥𝐴𝐴 < (𝑥 + 1)) ↔ (𝑦𝐴𝐴 < (𝑦 + 1))))
3130rmo4 2734 . . 3 (∃*𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1)) ↔ ∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ (((𝑥𝐴𝐴 < (𝑥 + 1)) ∧ (𝑦𝐴𝐴 < (𝑦 + 1))) → 𝑥 = 𝑦))
3226, 31sylibr 137 . 2 (𝐴 ∈ ℚ → ∃*𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1)))
33 reu5 2522 . 2 (∃!𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1)) ↔ (∃𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1)) ∧ ∃*𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1))))
341, 32, 33sylanbrc 394 1 (𝐴 ∈ ℚ → ∃!𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 97  wb 98  wcel 1393  wral 2306  wrex 2307  ∃!wreu 2308  ∃*wrmo 2309   class class class wbr 3764  (class class class)co 5512  cr 6888  1c1 6890   + caddc 6892   < clt 7060  cle 7061  cz 8245  cq 8554
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-nul 3883  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-iinf 4311  ax-cnex 6975  ax-resscn 6976  ax-1cn 6977  ax-1re 6978  ax-icn 6979  ax-addcl 6980  ax-addrcl 6981  ax-mulcl 6982  ax-mulrcl 6983  ax-addcom 6984  ax-mulcom 6985  ax-addass 6986  ax-mulass 6987  ax-distr 6988  ax-i2m1 6989  ax-1rid 6991  ax-0id 6992  ax-rnegex 6993  ax-precex 6994  ax-cnre 6995  ax-pre-ltirr 6996  ax-pre-ltwlin 6997  ax-pre-lttrn 6998  ax-pre-apti 6999  ax-pre-ltadd 7000  ax-pre-mulgt0 7001  ax-pre-mulext 7002  ax-arch 7003
This theorem depends on definitions:  df-bi 110  df-dc 743  df-3or 886  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-nel 2207  df-ral 2311  df-rex 2312  df-reu 2313  df-rmo 2314  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-int 3616  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-tr 3855  df-eprel 4026  df-id 4030  df-po 4033  df-iso 4034  df-iord 4103  df-on 4105  df-suc 4108  df-iom 4314  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-riota 5468  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-1st 5767  df-2nd 5768  df-recs 5920  df-irdg 5957  df-1o 6001  df-2o 6002  df-oadd 6005  df-omul 6006  df-er 6106  df-ec 6108  df-qs 6112  df-ni 6402  df-pli 6403  df-mi 6404  df-lti 6405  df-plpq 6442  df-mpq 6443  df-enq 6445  df-nqqs 6446  df-plqqs 6447  df-mqqs 6448  df-1nqqs 6449  df-rq 6450  df-ltnqqs 6451  df-enq0 6522  df-nq0 6523  df-0nq0 6524  df-plq0 6525  df-mq0 6526  df-inp 6564  df-i1p 6565  df-iplp 6566  df-iltp 6568  df-enr 6811  df-nr 6812  df-ltr 6815  df-0r 6816  df-1r 6817  df-0 6896  df-1 6897  df-r 6899  df-lt 6902  df-pnf 7062  df-mnf 7063  df-xr 7064  df-ltxr 7065  df-le 7066  df-sub 7184  df-neg 7185  df-reap 7566  df-ap 7573  df-div 7652  df-inn 7915  df-n0 8182  df-z 8246  df-q 8555  df-rp 8584
This theorem is referenced by:  flqcl  9117  flqlelt  9118  flqbi  9132
  Copyright terms: Public domain W3C validator