ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prcdnql GIF version

Theorem prcdnql 6582
Description: A lower cut is closed downwards under the positive fractions. (Contributed by Jim Kingdon, 28-Sep-2019.)
Assertion
Ref Expression
prcdnql ((⟨𝐿, 𝑈⟩ ∈ P𝐵𝐿) → (𝐶 <Q 𝐵𝐶𝐿))

Proof of Theorem prcdnql
Dummy variables 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltrelnq 6463 . . . . . 6 <Q ⊆ (Q × Q)
21brel 4392 . . . . 5 (𝐶 <Q 𝐵 → (𝐶Q𝐵Q))
32simpld 105 . . . 4 (𝐶 <Q 𝐵𝐶Q)
43adantl 262 . . 3 (((⟨𝐿, 𝑈⟩ ∈ P𝐵𝐿) ∧ 𝐶 <Q 𝐵) → 𝐶Q)
5 breq1 3767 . . . . . . 7 (𝑐 = 𝐶 → (𝑐 <Q 𝐵𝐶 <Q 𝐵))
6 eleq1 2100 . . . . . . 7 (𝑐 = 𝐶 → (𝑐𝐿𝐶𝐿))
75, 6imbi12d 223 . . . . . 6 (𝑐 = 𝐶 → ((𝑐 <Q 𝐵𝑐𝐿) ↔ (𝐶 <Q 𝐵𝐶𝐿)))
87imbi2d 219 . . . . 5 (𝑐 = 𝐶 → (((⟨𝐿, 𝑈⟩ ∈ P𝐵𝐿) → (𝑐 <Q 𝐵𝑐𝐿)) ↔ ((⟨𝐿, 𝑈⟩ ∈ P𝐵𝐿) → (𝐶 <Q 𝐵𝐶𝐿))))
91brel 4392 . . . . . . . . 9 (𝑐 <Q 𝐵 → (𝑐Q𝐵Q))
109ancomd 254 . . . . . . . 8 (𝑐 <Q 𝐵 → (𝐵Q𝑐Q))
11 an42 521 . . . . . . . . 9 (((𝐵Q𝑐Q) ∧ (𝐵𝐿 ∧ ⟨𝐿, 𝑈⟩ ∈ P)) ↔ ((𝐵Q𝐵𝐿) ∧ (⟨𝐿, 𝑈⟩ ∈ P𝑐Q)))
12 breq2 3768 . . . . . . . . . . . . . . . 16 (𝑏 = 𝐵 → (𝑐 <Q 𝑏𝑐 <Q 𝐵))
13 eleq1 2100 . . . . . . . . . . . . . . . 16 (𝑏 = 𝐵 → (𝑏𝐿𝐵𝐿))
1412, 13anbi12d 442 . . . . . . . . . . . . . . 15 (𝑏 = 𝐵 → ((𝑐 <Q 𝑏𝑏𝐿) ↔ (𝑐 <Q 𝐵𝐵𝐿)))
1514rspcev 2656 . . . . . . . . . . . . . 14 ((𝐵Q ∧ (𝑐 <Q 𝐵𝐵𝐿)) → ∃𝑏Q (𝑐 <Q 𝑏𝑏𝐿))
16 elinp 6572 . . . . . . . . . . . . . . . 16 (⟨𝐿, 𝑈⟩ ∈ P ↔ (((𝐿Q𝑈Q) ∧ (∃𝑐Q 𝑐𝐿 ∧ ∃𝑏Q 𝑏𝑈)) ∧ ((∀𝑐Q (𝑐𝐿 ↔ ∃𝑏Q (𝑐 <Q 𝑏𝑏𝐿)) ∧ ∀𝑏Q (𝑏𝑈 ↔ ∃𝑐Q (𝑐 <Q 𝑏𝑐𝑈))) ∧ ∀𝑐Q ¬ (𝑐𝐿𝑐𝑈) ∧ ∀𝑐Q𝑏Q (𝑐 <Q 𝑏 → (𝑐𝐿𝑏𝑈)))))
17 simpr1l 961 . . . . . . . . . . . . . . . 16 ((((𝐿Q𝑈Q) ∧ (∃𝑐Q 𝑐𝐿 ∧ ∃𝑏Q 𝑏𝑈)) ∧ ((∀𝑐Q (𝑐𝐿 ↔ ∃𝑏Q (𝑐 <Q 𝑏𝑏𝐿)) ∧ ∀𝑏Q (𝑏𝑈 ↔ ∃𝑐Q (𝑐 <Q 𝑏𝑐𝑈))) ∧ ∀𝑐Q ¬ (𝑐𝐿𝑐𝑈) ∧ ∀𝑐Q𝑏Q (𝑐 <Q 𝑏 → (𝑐𝐿𝑏𝑈)))) → ∀𝑐Q (𝑐𝐿 ↔ ∃𝑏Q (𝑐 <Q 𝑏𝑏𝐿)))
1816, 17sylbi 114 . . . . . . . . . . . . . . 15 (⟨𝐿, 𝑈⟩ ∈ P → ∀𝑐Q (𝑐𝐿 ↔ ∃𝑏Q (𝑐 <Q 𝑏𝑏𝐿)))
1918r19.21bi 2407 . . . . . . . . . . . . . 14 ((⟨𝐿, 𝑈⟩ ∈ P𝑐Q) → (𝑐𝐿 ↔ ∃𝑏Q (𝑐 <Q 𝑏𝑏𝐿)))
2015, 19syl5ibrcom 146 . . . . . . . . . . . . 13 ((𝐵Q ∧ (𝑐 <Q 𝐵𝐵𝐿)) → ((⟨𝐿, 𝑈⟩ ∈ P𝑐Q) → 𝑐𝐿))
21203impb 1100 . . . . . . . . . . . 12 ((𝐵Q𝑐 <Q 𝐵𝐵𝐿) → ((⟨𝐿, 𝑈⟩ ∈ P𝑐Q) → 𝑐𝐿))
22213com12 1108 . . . . . . . . . . 11 ((𝑐 <Q 𝐵𝐵Q𝐵𝐿) → ((⟨𝐿, 𝑈⟩ ∈ P𝑐Q) → 𝑐𝐿))
23223expib 1107 . . . . . . . . . 10 (𝑐 <Q 𝐵 → ((𝐵Q𝐵𝐿) → ((⟨𝐿, 𝑈⟩ ∈ P𝑐Q) → 𝑐𝐿)))
2423impd 242 . . . . . . . . 9 (𝑐 <Q 𝐵 → (((𝐵Q𝐵𝐿) ∧ (⟨𝐿, 𝑈⟩ ∈ P𝑐Q)) → 𝑐𝐿))
2511, 24syl5bi 141 . . . . . . . 8 (𝑐 <Q 𝐵 → (((𝐵Q𝑐Q) ∧ (𝐵𝐿 ∧ ⟨𝐿, 𝑈⟩ ∈ P)) → 𝑐𝐿))
2610, 25mpand 405 . . . . . . 7 (𝑐 <Q 𝐵 → ((𝐵𝐿 ∧ ⟨𝐿, 𝑈⟩ ∈ P) → 𝑐𝐿))
2726com12 27 . . . . . 6 ((𝐵𝐿 ∧ ⟨𝐿, 𝑈⟩ ∈ P) → (𝑐 <Q 𝐵𝑐𝐿))
2827ancoms 255 . . . . 5 ((⟨𝐿, 𝑈⟩ ∈ P𝐵𝐿) → (𝑐 <Q 𝐵𝑐𝐿))
298, 28vtoclg 2613 . . . 4 (𝐶Q → ((⟨𝐿, 𝑈⟩ ∈ P𝐵𝐿) → (𝐶 <Q 𝐵𝐶𝐿)))
3029impd 242 . . 3 (𝐶Q → (((⟨𝐿, 𝑈⟩ ∈ P𝐵𝐿) ∧ 𝐶 <Q 𝐵) → 𝐶𝐿))
314, 30mpcom 32 . 2 (((⟨𝐿, 𝑈⟩ ∈ P𝐵𝐿) ∧ 𝐶 <Q 𝐵) → 𝐶𝐿)
3231ex 108 1 ((⟨𝐿, 𝑈⟩ ∈ P𝐵𝐿) → (𝐶 <Q 𝐵𝐶𝐿))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 97  wb 98  wo 629  w3a 885   = wceq 1243  wcel 1393  wral 2306  wrex 2307  wss 2917  cop 3378   class class class wbr 3764  Qcnq 6378   <Q cltq 6383  Pcnp 6389
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-iinf 4311
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-reu 2313  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-int 3616  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-id 4030  df-iom 4314  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-qs 6112  df-ni 6402  df-nqqs 6446  df-ltnqqs 6451  df-inp 6564
This theorem is referenced by:  prubl  6584  addnqprllem  6625  nqprl  6649  mulnqprl  6666  distrlem4prl  6682  ltprordil  6687  1idprl  6688  ltpopr  6693  ltaddpr  6695  ltexprlemlol  6700  ltexprlemfl  6707  ltexprlemrl  6708  aptiprleml  6737  aptiprlemu  6738  archrecpr  6762  caucvgprprlemml  6792
  Copyright terms: Public domain W3C validator