ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm5.18dc GIF version

Theorem pm5.18dc 777
Description: Relationship between an equivalence and an equivalence with some negation, for decidable propositions. Based on theorem *5.18 of [WhiteheadRussell] p. 124. Given decidability, we can consider ¬ (𝜑 ↔ ¬ 𝜓) to represent "negated exclusive-or". (Contributed by Jim Kingdon, 4-Apr-2018.)
Assertion
Ref Expression
pm5.18dc (DECID 𝜑 → (DECID 𝜓 → ((𝜑𝜓) ↔ ¬ (𝜑 ↔ ¬ 𝜓))))

Proof of Theorem pm5.18dc
StepHypRef Expression
1 df-dc 743 . 2 (DECID 𝜑 ↔ (𝜑 ∨ ¬ 𝜑))
2 pm5.501 233 . . . . . . . 8 (𝜑 → (¬ 𝜓 ↔ (𝜑 ↔ ¬ 𝜓)))
32a1d 22 . . . . . . 7 (𝜑 → (DECID 𝜓 → (¬ 𝜓 ↔ (𝜑 ↔ ¬ 𝜓))))
43con1biddc 770 . . . . . 6 (𝜑 → (DECID 𝜓 → (¬ (𝜑 ↔ ¬ 𝜓) ↔ 𝜓)))
54imp 115 . . . . 5 ((𝜑DECID 𝜓) → (¬ (𝜑 ↔ ¬ 𝜓) ↔ 𝜓))
6 pm5.501 233 . . . . . 6 (𝜑 → (𝜓 ↔ (𝜑𝜓)))
76adantr 261 . . . . 5 ((𝜑DECID 𝜓) → (𝜓 ↔ (𝜑𝜓)))
85, 7bitr2d 178 . . . 4 ((𝜑DECID 𝜓) → ((𝜑𝜓) ↔ ¬ (𝜑 ↔ ¬ 𝜓)))
98ex 108 . . 3 (𝜑 → (DECID 𝜓 → ((𝜑𝜓) ↔ ¬ (𝜑 ↔ ¬ 𝜓))))
10 dcn 746 . . . . . . 7 (DECID 𝜓DECID ¬ 𝜓)
11 nbn2 613 . . . . . . . . 9 𝜑 → (¬ ¬ 𝜓 ↔ (𝜑 ↔ ¬ 𝜓)))
1211a1d 22 . . . . . . . 8 𝜑 → (DECID ¬ 𝜓 → (¬ ¬ 𝜓 ↔ (𝜑 ↔ ¬ 𝜓))))
1312con1biddc 770 . . . . . . 7 𝜑 → (DECID ¬ 𝜓 → (¬ (𝜑 ↔ ¬ 𝜓) ↔ ¬ 𝜓)))
1410, 13syl5 28 . . . . . 6 𝜑 → (DECID 𝜓 → (¬ (𝜑 ↔ ¬ 𝜓) ↔ ¬ 𝜓)))
1514imp 115 . . . . 5 ((¬ 𝜑DECID 𝜓) → (¬ (𝜑 ↔ ¬ 𝜓) ↔ ¬ 𝜓))
16 nbn2 613 . . . . . 6 𝜑 → (¬ 𝜓 ↔ (𝜑𝜓)))
1716adantr 261 . . . . 5 ((¬ 𝜑DECID 𝜓) → (¬ 𝜓 ↔ (𝜑𝜓)))
1815, 17bitr2d 178 . . . 4 ((¬ 𝜑DECID 𝜓) → ((𝜑𝜓) ↔ ¬ (𝜑 ↔ ¬ 𝜓)))
1918ex 108 . . 3 𝜑 → (DECID 𝜓 → ((𝜑𝜓) ↔ ¬ (𝜑 ↔ ¬ 𝜓))))
209, 19jaoi 636 . 2 ((𝜑 ∨ ¬ 𝜑) → (DECID 𝜓 → ((𝜑𝜓) ↔ ¬ (𝜑 ↔ ¬ 𝜓))))
211, 20sylbi 114 1 (DECID 𝜑 → (DECID 𝜓 → ((𝜑𝜓) ↔ ¬ (𝜑 ↔ ¬ 𝜓))))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 97  wb 98  wo 629  DECID wdc 742
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630
This theorem depends on definitions:  df-bi 110  df-dc 743
This theorem is referenced by:  xor3dc  1278  dfbi3dc  1288
  Copyright terms: Public domain W3C validator