ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opexg GIF version

Theorem opexg 3964
Description: An ordered pair of sets is a set. (Contributed by Jim Kingdon, 11-Jan-2019.)
Assertion
Ref Expression
opexg ((𝐴𝑉𝐵𝑊) → ⟨𝐴, 𝐵⟩ ∈ V)

Proof of Theorem opexg
StepHypRef Expression
1 dfopg 3547 . 2 ((𝐴𝑉𝐵𝑊) → ⟨𝐴, 𝐵⟩ = {{𝐴}, {𝐴, 𝐵}})
2 elex 2566 . . . . 5 (𝐴𝑉𝐴 ∈ V)
3 snexg 3936 . . . . 5 (𝐴 ∈ V → {𝐴} ∈ V)
42, 3syl 14 . . . 4 (𝐴𝑉 → {𝐴} ∈ V)
54adantr 261 . . 3 ((𝐴𝑉𝐵𝑊) → {𝐴} ∈ V)
6 elex 2566 . . . 4 (𝐵𝑊𝐵 ∈ V)
7 prexg 3947 . . . 4 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → {𝐴, 𝐵} ∈ V)
82, 6, 7syl2an 273 . . 3 ((𝐴𝑉𝐵𝑊) → {𝐴, 𝐵} ∈ V)
9 prexg 3947 . . 3 (({𝐴} ∈ V ∧ {𝐴, 𝐵} ∈ V) → {{𝐴}, {𝐴, 𝐵}} ∈ V)
105, 8, 9syl2anc 391 . 2 ((𝐴𝑉𝐵𝑊) → {{𝐴}, {𝐴, 𝐵}} ∈ V)
111, 10eqeltrd 2114 1 ((𝐴𝑉𝐵𝑊) → ⟨𝐴, 𝐵⟩ ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 97  wcel 1393  Vcvv 2557  {csn 3375  {cpr 3376  cop 3378
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-v 2559  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384
This theorem is referenced by:  opex  3966  otexg  3967  fliftel1  5434  oprabid  5537  ovexg  5539  eloprabga  5591  op1st  5773  op2nd  5774  ot1stg  5779  ot2ndg  5780  ot3rdgg  5781  elxp6  5796  mpt2fvex  5829  algrflem  5850  algrflemg  5851  mpt2xopoveq  5855  brtposg  5869  tfr0  5937  tfrlemisucaccv  5939  tfrlemibxssdm  5941  tfrlemibfn  5942  tfrlemi14d  5947  mulpipq2  6469  enq0breq  6534  addvalex  6920  peano2nnnn  6929  axcnre  6955  frec2uzrdg  9195  frecuzrdg0  9200  frecuzrdgsuc  9201
  Copyright terms: Public domain W3C validator