ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulnqpru GIF version

Theorem mulnqpru 6667
Description: Lemma to prove upward closure in positive real multiplication. (Contributed by Jim Kingdon, 10-Dec-2019.)
Assertion
Ref Expression
mulnqpru ((((𝐴P𝐺 ∈ (2nd𝐴)) ∧ (𝐵P𝐻 ∈ (2nd𝐵))) ∧ 𝑋Q) → ((𝐺 ·Q 𝐻) <Q 𝑋𝑋 ∈ (2nd ‘(𝐴 ·P 𝐵))))

Proof of Theorem mulnqpru
Dummy variables 𝑣 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltmnqg 6499 . . . . . . 7 ((𝑦Q𝑧Q𝑤Q) → (𝑦 <Q 𝑧 ↔ (𝑤 ·Q 𝑦) <Q (𝑤 ·Q 𝑧)))
21adantl 262 . . . . . 6 (((((𝐴P𝐺 ∈ (2nd𝐴)) ∧ (𝐵P𝐻 ∈ (2nd𝐵))) ∧ 𝑋Q) ∧ (𝑦Q𝑧Q𝑤Q)) → (𝑦 <Q 𝑧 ↔ (𝑤 ·Q 𝑦) <Q (𝑤 ·Q 𝑧)))
3 prop 6573 . . . . . . . . 9 (𝐴P → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ P)
4 elprnqu 6580 . . . . . . . . 9 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝐺 ∈ (2nd𝐴)) → 𝐺Q)
53, 4sylan 267 . . . . . . . 8 ((𝐴P𝐺 ∈ (2nd𝐴)) → 𝐺Q)
65ad2antrr 457 . . . . . . 7 ((((𝐴P𝐺 ∈ (2nd𝐴)) ∧ (𝐵P𝐻 ∈ (2nd𝐵))) ∧ 𝑋Q) → 𝐺Q)
7 prop 6573 . . . . . . . . 9 (𝐵P → ⟨(1st𝐵), (2nd𝐵)⟩ ∈ P)
8 elprnqu 6580 . . . . . . . . 9 ((⟨(1st𝐵), (2nd𝐵)⟩ ∈ P𝐻 ∈ (2nd𝐵)) → 𝐻Q)
97, 8sylan 267 . . . . . . . 8 ((𝐵P𝐻 ∈ (2nd𝐵)) → 𝐻Q)
109ad2antlr 458 . . . . . . 7 ((((𝐴P𝐺 ∈ (2nd𝐴)) ∧ (𝐵P𝐻 ∈ (2nd𝐵))) ∧ 𝑋Q) → 𝐻Q)
11 mulclnq 6474 . . . . . . 7 ((𝐺Q𝐻Q) → (𝐺 ·Q 𝐻) ∈ Q)
126, 10, 11syl2anc 391 . . . . . 6 ((((𝐴P𝐺 ∈ (2nd𝐴)) ∧ (𝐵P𝐻 ∈ (2nd𝐵))) ∧ 𝑋Q) → (𝐺 ·Q 𝐻) ∈ Q)
13 simpr 103 . . . . . 6 ((((𝐴P𝐺 ∈ (2nd𝐴)) ∧ (𝐵P𝐻 ∈ (2nd𝐵))) ∧ 𝑋Q) → 𝑋Q)
14 recclnq 6490 . . . . . . 7 (𝐻Q → (*Q𝐻) ∈ Q)
1510, 14syl 14 . . . . . 6 ((((𝐴P𝐺 ∈ (2nd𝐴)) ∧ (𝐵P𝐻 ∈ (2nd𝐵))) ∧ 𝑋Q) → (*Q𝐻) ∈ Q)
16 mulcomnqg 6481 . . . . . . 7 ((𝑦Q𝑧Q) → (𝑦 ·Q 𝑧) = (𝑧 ·Q 𝑦))
1716adantl 262 . . . . . 6 (((((𝐴P𝐺 ∈ (2nd𝐴)) ∧ (𝐵P𝐻 ∈ (2nd𝐵))) ∧ 𝑋Q) ∧ (𝑦Q𝑧Q)) → (𝑦 ·Q 𝑧) = (𝑧 ·Q 𝑦))
182, 12, 13, 15, 17caovord2d 5670 . . . . 5 ((((𝐴P𝐺 ∈ (2nd𝐴)) ∧ (𝐵P𝐻 ∈ (2nd𝐵))) ∧ 𝑋Q) → ((𝐺 ·Q 𝐻) <Q 𝑋 ↔ ((𝐺 ·Q 𝐻) ·Q (*Q𝐻)) <Q (𝑋 ·Q (*Q𝐻))))
19 mulassnqg 6482 . . . . . . . 8 ((𝐺Q𝐻Q ∧ (*Q𝐻) ∈ Q) → ((𝐺 ·Q 𝐻) ·Q (*Q𝐻)) = (𝐺 ·Q (𝐻 ·Q (*Q𝐻))))
206, 10, 15, 19syl3anc 1135 . . . . . . 7 ((((𝐴P𝐺 ∈ (2nd𝐴)) ∧ (𝐵P𝐻 ∈ (2nd𝐵))) ∧ 𝑋Q) → ((𝐺 ·Q 𝐻) ·Q (*Q𝐻)) = (𝐺 ·Q (𝐻 ·Q (*Q𝐻))))
21 recidnq 6491 . . . . . . . . 9 (𝐻Q → (𝐻 ·Q (*Q𝐻)) = 1Q)
2221oveq2d 5528 . . . . . . . 8 (𝐻Q → (𝐺 ·Q (𝐻 ·Q (*Q𝐻))) = (𝐺 ·Q 1Q))
2310, 22syl 14 . . . . . . 7 ((((𝐴P𝐺 ∈ (2nd𝐴)) ∧ (𝐵P𝐻 ∈ (2nd𝐵))) ∧ 𝑋Q) → (𝐺 ·Q (𝐻 ·Q (*Q𝐻))) = (𝐺 ·Q 1Q))
24 mulidnq 6487 . . . . . . . 8 (𝐺Q → (𝐺 ·Q 1Q) = 𝐺)
256, 24syl 14 . . . . . . 7 ((((𝐴P𝐺 ∈ (2nd𝐴)) ∧ (𝐵P𝐻 ∈ (2nd𝐵))) ∧ 𝑋Q) → (𝐺 ·Q 1Q) = 𝐺)
2620, 23, 253eqtrd 2076 . . . . . 6 ((((𝐴P𝐺 ∈ (2nd𝐴)) ∧ (𝐵P𝐻 ∈ (2nd𝐵))) ∧ 𝑋Q) → ((𝐺 ·Q 𝐻) ·Q (*Q𝐻)) = 𝐺)
2726breq1d 3774 . . . . 5 ((((𝐴P𝐺 ∈ (2nd𝐴)) ∧ (𝐵P𝐻 ∈ (2nd𝐵))) ∧ 𝑋Q) → (((𝐺 ·Q 𝐻) ·Q (*Q𝐻)) <Q (𝑋 ·Q (*Q𝐻)) ↔ 𝐺 <Q (𝑋 ·Q (*Q𝐻))))
2818, 27bitrd 177 . . . 4 ((((𝐴P𝐺 ∈ (2nd𝐴)) ∧ (𝐵P𝐻 ∈ (2nd𝐵))) ∧ 𝑋Q) → ((𝐺 ·Q 𝐻) <Q 𝑋𝐺 <Q (𝑋 ·Q (*Q𝐻))))
29 prcunqu 6583 . . . . . 6 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝐺 ∈ (2nd𝐴)) → (𝐺 <Q (𝑋 ·Q (*Q𝐻)) → (𝑋 ·Q (*Q𝐻)) ∈ (2nd𝐴)))
303, 29sylan 267 . . . . 5 ((𝐴P𝐺 ∈ (2nd𝐴)) → (𝐺 <Q (𝑋 ·Q (*Q𝐻)) → (𝑋 ·Q (*Q𝐻)) ∈ (2nd𝐴)))
3130ad2antrr 457 . . . 4 ((((𝐴P𝐺 ∈ (2nd𝐴)) ∧ (𝐵P𝐻 ∈ (2nd𝐵))) ∧ 𝑋Q) → (𝐺 <Q (𝑋 ·Q (*Q𝐻)) → (𝑋 ·Q (*Q𝐻)) ∈ (2nd𝐴)))
3228, 31sylbid 139 . . 3 ((((𝐴P𝐺 ∈ (2nd𝐴)) ∧ (𝐵P𝐻 ∈ (2nd𝐵))) ∧ 𝑋Q) → ((𝐺 ·Q 𝐻) <Q 𝑋 → (𝑋 ·Q (*Q𝐻)) ∈ (2nd𝐴)))
33 df-imp 6567 . . . . . . . . 9 ·P = (𝑤P, 𝑣P ↦ ⟨{𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝑤) ∧ 𝑧 ∈ (1st𝑣) ∧ 𝑥 = (𝑦 ·Q 𝑧))}, {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝑤) ∧ 𝑧 ∈ (2nd𝑣) ∧ 𝑥 = (𝑦 ·Q 𝑧))}⟩)
34 mulclnq 6474 . . . . . . . . 9 ((𝑦Q𝑧Q) → (𝑦 ·Q 𝑧) ∈ Q)
3533, 34genppreclu 6613 . . . . . . . 8 ((𝐴P𝐵P) → (((𝑋 ·Q (*Q𝐻)) ∈ (2nd𝐴) ∧ 𝐻 ∈ (2nd𝐵)) → ((𝑋 ·Q (*Q𝐻)) ·Q 𝐻) ∈ (2nd ‘(𝐴 ·P 𝐵))))
3635exp4b 349 . . . . . . 7 (𝐴P → (𝐵P → ((𝑋 ·Q (*Q𝐻)) ∈ (2nd𝐴) → (𝐻 ∈ (2nd𝐵) → ((𝑋 ·Q (*Q𝐻)) ·Q 𝐻) ∈ (2nd ‘(𝐴 ·P 𝐵))))))
3736com34 77 . . . . . 6 (𝐴P → (𝐵P → (𝐻 ∈ (2nd𝐵) → ((𝑋 ·Q (*Q𝐻)) ∈ (2nd𝐴) → ((𝑋 ·Q (*Q𝐻)) ·Q 𝐻) ∈ (2nd ‘(𝐴 ·P 𝐵))))))
3837imp32 244 . . . . 5 ((𝐴P ∧ (𝐵P𝐻 ∈ (2nd𝐵))) → ((𝑋 ·Q (*Q𝐻)) ∈ (2nd𝐴) → ((𝑋 ·Q (*Q𝐻)) ·Q 𝐻) ∈ (2nd ‘(𝐴 ·P 𝐵))))
3938adantlr 446 . . . 4 (((𝐴P𝐺 ∈ (2nd𝐴)) ∧ (𝐵P𝐻 ∈ (2nd𝐵))) → ((𝑋 ·Q (*Q𝐻)) ∈ (2nd𝐴) → ((𝑋 ·Q (*Q𝐻)) ·Q 𝐻) ∈ (2nd ‘(𝐴 ·P 𝐵))))
4039adantr 261 . . 3 ((((𝐴P𝐺 ∈ (2nd𝐴)) ∧ (𝐵P𝐻 ∈ (2nd𝐵))) ∧ 𝑋Q) → ((𝑋 ·Q (*Q𝐻)) ∈ (2nd𝐴) → ((𝑋 ·Q (*Q𝐻)) ·Q 𝐻) ∈ (2nd ‘(𝐴 ·P 𝐵))))
4132, 40syld 40 . 2 ((((𝐴P𝐺 ∈ (2nd𝐴)) ∧ (𝐵P𝐻 ∈ (2nd𝐵))) ∧ 𝑋Q) → ((𝐺 ·Q 𝐻) <Q 𝑋 → ((𝑋 ·Q (*Q𝐻)) ·Q 𝐻) ∈ (2nd ‘(𝐴 ·P 𝐵))))
42 mulassnqg 6482 . . . . 5 ((𝑋Q ∧ (*Q𝐻) ∈ Q𝐻Q) → ((𝑋 ·Q (*Q𝐻)) ·Q 𝐻) = (𝑋 ·Q ((*Q𝐻) ·Q 𝐻)))
4313, 15, 10, 42syl3anc 1135 . . . 4 ((((𝐴P𝐺 ∈ (2nd𝐴)) ∧ (𝐵P𝐻 ∈ (2nd𝐵))) ∧ 𝑋Q) → ((𝑋 ·Q (*Q𝐻)) ·Q 𝐻) = (𝑋 ·Q ((*Q𝐻) ·Q 𝐻)))
44 mulcomnqg 6481 . . . . . . 7 (((*Q𝐻) ∈ Q𝐻Q) → ((*Q𝐻) ·Q 𝐻) = (𝐻 ·Q (*Q𝐻)))
4515, 10, 44syl2anc 391 . . . . . 6 ((((𝐴P𝐺 ∈ (2nd𝐴)) ∧ (𝐵P𝐻 ∈ (2nd𝐵))) ∧ 𝑋Q) → ((*Q𝐻) ·Q 𝐻) = (𝐻 ·Q (*Q𝐻)))
4610, 21syl 14 . . . . . 6 ((((𝐴P𝐺 ∈ (2nd𝐴)) ∧ (𝐵P𝐻 ∈ (2nd𝐵))) ∧ 𝑋Q) → (𝐻 ·Q (*Q𝐻)) = 1Q)
4745, 46eqtrd 2072 . . . . 5 ((((𝐴P𝐺 ∈ (2nd𝐴)) ∧ (𝐵P𝐻 ∈ (2nd𝐵))) ∧ 𝑋Q) → ((*Q𝐻) ·Q 𝐻) = 1Q)
4847oveq2d 5528 . . . 4 ((((𝐴P𝐺 ∈ (2nd𝐴)) ∧ (𝐵P𝐻 ∈ (2nd𝐵))) ∧ 𝑋Q) → (𝑋 ·Q ((*Q𝐻) ·Q 𝐻)) = (𝑋 ·Q 1Q))
49 mulidnq 6487 . . . . 5 (𝑋Q → (𝑋 ·Q 1Q) = 𝑋)
5049adantl 262 . . . 4 ((((𝐴P𝐺 ∈ (2nd𝐴)) ∧ (𝐵P𝐻 ∈ (2nd𝐵))) ∧ 𝑋Q) → (𝑋 ·Q 1Q) = 𝑋)
5143, 48, 503eqtrd 2076 . . 3 ((((𝐴P𝐺 ∈ (2nd𝐴)) ∧ (𝐵P𝐻 ∈ (2nd𝐵))) ∧ 𝑋Q) → ((𝑋 ·Q (*Q𝐻)) ·Q 𝐻) = 𝑋)
5251eleq1d 2106 . 2 ((((𝐴P𝐺 ∈ (2nd𝐴)) ∧ (𝐵P𝐻 ∈ (2nd𝐵))) ∧ 𝑋Q) → (((𝑋 ·Q (*Q𝐻)) ·Q 𝐻) ∈ (2nd ‘(𝐴 ·P 𝐵)) ↔ 𝑋 ∈ (2nd ‘(𝐴 ·P 𝐵))))
5341, 52sylibd 138 1 ((((𝐴P𝐺 ∈ (2nd𝐴)) ∧ (𝐵P𝐻 ∈ (2nd𝐵))) ∧ 𝑋Q) → ((𝐺 ·Q 𝐻) <Q 𝑋𝑋 ∈ (2nd ‘(𝐴 ·P 𝐵))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 97  wb 98  w3a 885   = wceq 1243  wcel 1393  cop 3378   class class class wbr 3764  cfv 4902  (class class class)co 5512  1st c1st 5765  2nd c2nd 5766  Qcnq 6378  1Qc1q 6379   ·Q cmq 6381  *Qcrq 6382   <Q cltq 6383  Pcnp 6389   ·P cmp 6392
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-nul 3883  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-iinf 4311
This theorem depends on definitions:  df-bi 110  df-dc 743  df-3or 886  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-ral 2311  df-rex 2312  df-reu 2313  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-int 3616  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-tr 3855  df-eprel 4026  df-id 4030  df-iord 4103  df-on 4105  df-suc 4108  df-iom 4314  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-1st 5767  df-2nd 5768  df-recs 5920  df-irdg 5957  df-1o 6001  df-oadd 6005  df-omul 6006  df-er 6106  df-ec 6108  df-qs 6112  df-ni 6402  df-mi 6404  df-lti 6405  df-mpq 6443  df-enq 6445  df-nqqs 6446  df-mqqs 6448  df-1nqqs 6449  df-rq 6450  df-ltnqqs 6451  df-inp 6564  df-imp 6567
This theorem is referenced by:  mullocprlem  6668  mulclpr  6670
  Copyright terms: Public domain W3C validator