ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltsrprg GIF version

Theorem ltsrprg 6832
Description: Ordering of signed reals in terms of positive reals. (Contributed by Jim Kingdon, 2-Jan-2019.)
Assertion
Ref Expression
ltsrprg (((𝐴P𝐵P) ∧ (𝐶P𝐷P)) → ([⟨𝐴, 𝐵⟩] ~R <R [⟨𝐶, 𝐷⟩] ~R ↔ (𝐴 +P 𝐷)<P (𝐵 +P 𝐶)))

Proof of Theorem ltsrprg
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 𝑢 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 enrex 6822 . 2 ~R ∈ V
2 enrer 6820 . 2 ~R Er (P × P)
3 df-nr 6812 . 2 R = ((P × P) / ~R )
4 df-ltr 6815 . 2 <R = {⟨𝑥, 𝑦⟩ ∣ ((𝑥R𝑦R) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = [⟨𝑧, 𝑤⟩] ~R𝑦 = [⟨𝑣, 𝑢⟩] ~R ) ∧ (𝑧 +P 𝑢)<P (𝑤 +P 𝑣)))}
5 enreceq 6821 . . . . 5 (((𝑧P𝑤P) ∧ (𝐴P𝐵P)) → ([⟨𝑧, 𝑤⟩] ~R = [⟨𝐴, 𝐵⟩] ~R ↔ (𝑧 +P 𝐵) = (𝑤 +P 𝐴)))
6 enreceq 6821 . . . . . 6 (((𝑣P𝑢P) ∧ (𝐶P𝐷P)) → ([⟨𝑣, 𝑢⟩] ~R = [⟨𝐶, 𝐷⟩] ~R ↔ (𝑣 +P 𝐷) = (𝑢 +P 𝐶)))
7 eqcom 2042 . . . . . 6 ((𝑣 +P 𝐷) = (𝑢 +P 𝐶) ↔ (𝑢 +P 𝐶) = (𝑣 +P 𝐷))
86, 7syl6bb 185 . . . . 5 (((𝑣P𝑢P) ∧ (𝐶P𝐷P)) → ([⟨𝑣, 𝑢⟩] ~R = [⟨𝐶, 𝐷⟩] ~R ↔ (𝑢 +P 𝐶) = (𝑣 +P 𝐷)))
95, 8bi2anan9 538 . . . 4 ((((𝑧P𝑤P) ∧ (𝐴P𝐵P)) ∧ ((𝑣P𝑢P) ∧ (𝐶P𝐷P))) → (([⟨𝑧, 𝑤⟩] ~R = [⟨𝐴, 𝐵⟩] ~R ∧ [⟨𝑣, 𝑢⟩] ~R = [⟨𝐶, 𝐷⟩] ~R ) ↔ ((𝑧 +P 𝐵) = (𝑤 +P 𝐴) ∧ (𝑢 +P 𝐶) = (𝑣 +P 𝐷))))
10 oveq12 5521 . . . . . . 7 (((𝑧 +P 𝐵) = (𝑤 +P 𝐴) ∧ (𝑢 +P 𝐶) = (𝑣 +P 𝐷)) → ((𝑧 +P 𝐵) +P (𝑢 +P 𝐶)) = ((𝑤 +P 𝐴) +P (𝑣 +P 𝐷)))
1110adantl 262 . . . . . 6 (((((𝑧P𝑤P) ∧ (𝐴P𝐵P)) ∧ ((𝑣P𝑢P) ∧ (𝐶P𝐷P))) ∧ ((𝑧 +P 𝐵) = (𝑤 +P 𝐴) ∧ (𝑢 +P 𝐶) = (𝑣 +P 𝐷))) → ((𝑧 +P 𝐵) +P (𝑢 +P 𝐶)) = ((𝑤 +P 𝐴) +P (𝑣 +P 𝐷)))
12 simprlr 490 . . . . . . . . . . 11 ((((𝑧P𝑤P) ∧ (𝐴P𝐵P)) ∧ ((𝑣P𝑢P) ∧ (𝐶P𝐷P))) → 𝑢P)
13 simplrr 488 . . . . . . . . . . 11 ((((𝑧P𝑤P) ∧ (𝐴P𝐵P)) ∧ ((𝑣P𝑢P) ∧ (𝐶P𝐷P))) → 𝐵P)
14 addcomprg 6676 . . . . . . . . . . . 12 ((𝑢P𝐵P) → (𝑢 +P 𝐵) = (𝐵 +P 𝑢))
1514oveq1d 5527 . . . . . . . . . . 11 ((𝑢P𝐵P) → ((𝑢 +P 𝐵) +P 𝐶) = ((𝐵 +P 𝑢) +P 𝐶))
1612, 13, 15syl2anc 391 . . . . . . . . . 10 ((((𝑧P𝑤P) ∧ (𝐴P𝐵P)) ∧ ((𝑣P𝑢P) ∧ (𝐶P𝐷P))) → ((𝑢 +P 𝐵) +P 𝐶) = ((𝐵 +P 𝑢) +P 𝐶))
17 simprrl 491 . . . . . . . . . . 11 ((((𝑧P𝑤P) ∧ (𝐴P𝐵P)) ∧ ((𝑣P𝑢P) ∧ (𝐶P𝐷P))) → 𝐶P)
18 addassprg 6677 . . . . . . . . . . 11 ((𝑢P𝐵P𝐶P) → ((𝑢 +P 𝐵) +P 𝐶) = (𝑢 +P (𝐵 +P 𝐶)))
1912, 13, 17, 18syl3anc 1135 . . . . . . . . . 10 ((((𝑧P𝑤P) ∧ (𝐴P𝐵P)) ∧ ((𝑣P𝑢P) ∧ (𝐶P𝐷P))) → ((𝑢 +P 𝐵) +P 𝐶) = (𝑢 +P (𝐵 +P 𝐶)))
20 addassprg 6677 . . . . . . . . . . 11 ((𝐵P𝑢P𝐶P) → ((𝐵 +P 𝑢) +P 𝐶) = (𝐵 +P (𝑢 +P 𝐶)))
2113, 12, 17, 20syl3anc 1135 . . . . . . . . . 10 ((((𝑧P𝑤P) ∧ (𝐴P𝐵P)) ∧ ((𝑣P𝑢P) ∧ (𝐶P𝐷P))) → ((𝐵 +P 𝑢) +P 𝐶) = (𝐵 +P (𝑢 +P 𝐶)))
2216, 19, 213eqtr3d 2080 . . . . . . . . 9 ((((𝑧P𝑤P) ∧ (𝐴P𝐵P)) ∧ ((𝑣P𝑢P) ∧ (𝐶P𝐷P))) → (𝑢 +P (𝐵 +P 𝐶)) = (𝐵 +P (𝑢 +P 𝐶)))
2322oveq2d 5528 . . . . . . . 8 ((((𝑧P𝑤P) ∧ (𝐴P𝐵P)) ∧ ((𝑣P𝑢P) ∧ (𝐶P𝐷P))) → (𝑧 +P (𝑢 +P (𝐵 +P 𝐶))) = (𝑧 +P (𝐵 +P (𝑢 +P 𝐶))))
24 simplll 485 . . . . . . . . 9 ((((𝑧P𝑤P) ∧ (𝐴P𝐵P)) ∧ ((𝑣P𝑢P) ∧ (𝐶P𝐷P))) → 𝑧P)
25 addclpr 6635 . . . . . . . . . . . . 13 ((𝑤P𝑣P) → (𝑤 +P 𝑣) ∈ P)
2625ad2ant2lr 479 . . . . . . . . . . . 12 (((𝑧P𝑤P) ∧ (𝑣P𝑢P)) → (𝑤 +P 𝑣) ∈ P)
27 addclpr 6635 . . . . . . . . . . . . 13 ((𝐵P𝐶P) → (𝐵 +P 𝐶) ∈ P)
2827ad2ant2lr 479 . . . . . . . . . . . 12 (((𝐴P𝐵P) ∧ (𝐶P𝐷P)) → (𝐵 +P 𝐶) ∈ P)
2926, 28anim12ci 322 . . . . . . . . . . 11 ((((𝑧P𝑤P) ∧ (𝑣P𝑢P)) ∧ ((𝐴P𝐵P) ∧ (𝐶P𝐷P))) → ((𝐵 +P 𝐶) ∈ P ∧ (𝑤 +P 𝑣) ∈ P))
3029an4s 522 . . . . . . . . . 10 ((((𝑧P𝑤P) ∧ (𝐴P𝐵P)) ∧ ((𝑣P𝑢P) ∧ (𝐶P𝐷P))) → ((𝐵 +P 𝐶) ∈ P ∧ (𝑤 +P 𝑣) ∈ P))
3130simpld 105 . . . . . . . . 9 ((((𝑧P𝑤P) ∧ (𝐴P𝐵P)) ∧ ((𝑣P𝑢P) ∧ (𝐶P𝐷P))) → (𝐵 +P 𝐶) ∈ P)
32 addassprg 6677 . . . . . . . . 9 ((𝑧P𝑢P ∧ (𝐵 +P 𝐶) ∈ P) → ((𝑧 +P 𝑢) +P (𝐵 +P 𝐶)) = (𝑧 +P (𝑢 +P (𝐵 +P 𝐶))))
3324, 12, 31, 32syl3anc 1135 . . . . . . . 8 ((((𝑧P𝑤P) ∧ (𝐴P𝐵P)) ∧ ((𝑣P𝑢P) ∧ (𝐶P𝐷P))) → ((𝑧 +P 𝑢) +P (𝐵 +P 𝐶)) = (𝑧 +P (𝑢 +P (𝐵 +P 𝐶))))
34 addclpr 6635 . . . . . . . . . 10 ((𝑢P𝐶P) → (𝑢 +P 𝐶) ∈ P)
3512, 17, 34syl2anc 391 . . . . . . . . 9 ((((𝑧P𝑤P) ∧ (𝐴P𝐵P)) ∧ ((𝑣P𝑢P) ∧ (𝐶P𝐷P))) → (𝑢 +P 𝐶) ∈ P)
36 addassprg 6677 . . . . . . . . 9 ((𝑧P𝐵P ∧ (𝑢 +P 𝐶) ∈ P) → ((𝑧 +P 𝐵) +P (𝑢 +P 𝐶)) = (𝑧 +P (𝐵 +P (𝑢 +P 𝐶))))
3724, 13, 35, 36syl3anc 1135 . . . . . . . 8 ((((𝑧P𝑤P) ∧ (𝐴P𝐵P)) ∧ ((𝑣P𝑢P) ∧ (𝐶P𝐷P))) → ((𝑧 +P 𝐵) +P (𝑢 +P 𝐶)) = (𝑧 +P (𝐵 +P (𝑢 +P 𝐶))))
3823, 33, 373eqtr4d 2082 . . . . . . 7 ((((𝑧P𝑤P) ∧ (𝐴P𝐵P)) ∧ ((𝑣P𝑢P) ∧ (𝐶P𝐷P))) → ((𝑧 +P 𝑢) +P (𝐵 +P 𝐶)) = ((𝑧 +P 𝐵) +P (𝑢 +P 𝐶)))
3938adantr 261 . . . . . 6 (((((𝑧P𝑤P) ∧ (𝐴P𝐵P)) ∧ ((𝑣P𝑢P) ∧ (𝐶P𝐷P))) ∧ ((𝑧 +P 𝐵) = (𝑤 +P 𝐴) ∧ (𝑢 +P 𝐶) = (𝑣 +P 𝐷))) → ((𝑧 +P 𝑢) +P (𝐵 +P 𝐶)) = ((𝑧 +P 𝐵) +P (𝑢 +P 𝐶)))
40 simprll 489 . . . . . . . . . . . 12 ((((𝑧P𝑤P) ∧ (𝐴P𝐵P)) ∧ ((𝑣P𝑢P) ∧ (𝐶P𝐷P))) → 𝑣P)
41 simplrl 487 . . . . . . . . . . . 12 ((((𝑧P𝑤P) ∧ (𝐴P𝐵P)) ∧ ((𝑣P𝑢P) ∧ (𝐶P𝐷P))) → 𝐴P)
42 addcomprg 6676 . . . . . . . . . . . 12 ((𝑣P𝐴P) → (𝑣 +P 𝐴) = (𝐴 +P 𝑣))
4340, 41, 42syl2anc 391 . . . . . . . . . . 11 ((((𝑧P𝑤P) ∧ (𝐴P𝐵P)) ∧ ((𝑣P𝑢P) ∧ (𝐶P𝐷P))) → (𝑣 +P 𝐴) = (𝐴 +P 𝑣))
4443oveq1d 5527 . . . . . . . . . 10 ((((𝑧P𝑤P) ∧ (𝐴P𝐵P)) ∧ ((𝑣P𝑢P) ∧ (𝐶P𝐷P))) → ((𝑣 +P 𝐴) +P 𝐷) = ((𝐴 +P 𝑣) +P 𝐷))
45 simprrr 492 . . . . . . . . . . 11 ((((𝑧P𝑤P) ∧ (𝐴P𝐵P)) ∧ ((𝑣P𝑢P) ∧ (𝐶P𝐷P))) → 𝐷P)
46 addassprg 6677 . . . . . . . . . . 11 ((𝑣P𝐴P𝐷P) → ((𝑣 +P 𝐴) +P 𝐷) = (𝑣 +P (𝐴 +P 𝐷)))
4740, 41, 45, 46syl3anc 1135 . . . . . . . . . 10 ((((𝑧P𝑤P) ∧ (𝐴P𝐵P)) ∧ ((𝑣P𝑢P) ∧ (𝐶P𝐷P))) → ((𝑣 +P 𝐴) +P 𝐷) = (𝑣 +P (𝐴 +P 𝐷)))
48 addassprg 6677 . . . . . . . . . . 11 ((𝐴P𝑣P𝐷P) → ((𝐴 +P 𝑣) +P 𝐷) = (𝐴 +P (𝑣 +P 𝐷)))
4941, 40, 45, 48syl3anc 1135 . . . . . . . . . 10 ((((𝑧P𝑤P) ∧ (𝐴P𝐵P)) ∧ ((𝑣P𝑢P) ∧ (𝐶P𝐷P))) → ((𝐴 +P 𝑣) +P 𝐷) = (𝐴 +P (𝑣 +P 𝐷)))
5044, 47, 493eqtr3d 2080 . . . . . . . . 9 ((((𝑧P𝑤P) ∧ (𝐴P𝐵P)) ∧ ((𝑣P𝑢P) ∧ (𝐶P𝐷P))) → (𝑣 +P (𝐴 +P 𝐷)) = (𝐴 +P (𝑣 +P 𝐷)))
5150oveq2d 5528 . . . . . . . 8 ((((𝑧P𝑤P) ∧ (𝐴P𝐵P)) ∧ ((𝑣P𝑢P) ∧ (𝐶P𝐷P))) → (𝑤 +P (𝑣 +P (𝐴 +P 𝐷))) = (𝑤 +P (𝐴 +P (𝑣 +P 𝐷))))
52 simpllr 486 . . . . . . . . 9 ((((𝑧P𝑤P) ∧ (𝐴P𝐵P)) ∧ ((𝑣P𝑢P) ∧ (𝐶P𝐷P))) → 𝑤P)
53 addclpr 6635 . . . . . . . . . 10 ((𝐴P𝐷P) → (𝐴 +P 𝐷) ∈ P)
5441, 45, 53syl2anc 391 . . . . . . . . 9 ((((𝑧P𝑤P) ∧ (𝐴P𝐵P)) ∧ ((𝑣P𝑢P) ∧ (𝐶P𝐷P))) → (𝐴 +P 𝐷) ∈ P)
55 addassprg 6677 . . . . . . . . 9 ((𝑤P𝑣P ∧ (𝐴 +P 𝐷) ∈ P) → ((𝑤 +P 𝑣) +P (𝐴 +P 𝐷)) = (𝑤 +P (𝑣 +P (𝐴 +P 𝐷))))
5652, 40, 54, 55syl3anc 1135 . . . . . . . 8 ((((𝑧P𝑤P) ∧ (𝐴P𝐵P)) ∧ ((𝑣P𝑢P) ∧ (𝐶P𝐷P))) → ((𝑤 +P 𝑣) +P (𝐴 +P 𝐷)) = (𝑤 +P (𝑣 +P (𝐴 +P 𝐷))))
57 addclpr 6635 . . . . . . . . . 10 ((𝑣P𝐷P) → (𝑣 +P 𝐷) ∈ P)
5840, 45, 57syl2anc 391 . . . . . . . . 9 ((((𝑧P𝑤P) ∧ (𝐴P𝐵P)) ∧ ((𝑣P𝑢P) ∧ (𝐶P𝐷P))) → (𝑣 +P 𝐷) ∈ P)
59 addassprg 6677 . . . . . . . . 9 ((𝑤P𝐴P ∧ (𝑣 +P 𝐷) ∈ P) → ((𝑤 +P 𝐴) +P (𝑣 +P 𝐷)) = (𝑤 +P (𝐴 +P (𝑣 +P 𝐷))))
6052, 41, 58, 59syl3anc 1135 . . . . . . . 8 ((((𝑧P𝑤P) ∧ (𝐴P𝐵P)) ∧ ((𝑣P𝑢P) ∧ (𝐶P𝐷P))) → ((𝑤 +P 𝐴) +P (𝑣 +P 𝐷)) = (𝑤 +P (𝐴 +P (𝑣 +P 𝐷))))
6151, 56, 603eqtr4d 2082 . . . . . . 7 ((((𝑧P𝑤P) ∧ (𝐴P𝐵P)) ∧ ((𝑣P𝑢P) ∧ (𝐶P𝐷P))) → ((𝑤 +P 𝑣) +P (𝐴 +P 𝐷)) = ((𝑤 +P 𝐴) +P (𝑣 +P 𝐷)))
6261adantr 261 . . . . . 6 (((((𝑧P𝑤P) ∧ (𝐴P𝐵P)) ∧ ((𝑣P𝑢P) ∧ (𝐶P𝐷P))) ∧ ((𝑧 +P 𝐵) = (𝑤 +P 𝐴) ∧ (𝑢 +P 𝐶) = (𝑣 +P 𝐷))) → ((𝑤 +P 𝑣) +P (𝐴 +P 𝐷)) = ((𝑤 +P 𝐴) +P (𝑣 +P 𝐷)))
6311, 39, 623eqtr4d 2082 . . . . 5 (((((𝑧P𝑤P) ∧ (𝐴P𝐵P)) ∧ ((𝑣P𝑢P) ∧ (𝐶P𝐷P))) ∧ ((𝑧 +P 𝐵) = (𝑤 +P 𝐴) ∧ (𝑢 +P 𝐶) = (𝑣 +P 𝐷))) → ((𝑧 +P 𝑢) +P (𝐵 +P 𝐶)) = ((𝑤 +P 𝑣) +P (𝐴 +P 𝐷)))
6463ex 108 . . . 4 ((((𝑧P𝑤P) ∧ (𝐴P𝐵P)) ∧ ((𝑣P𝑢P) ∧ (𝐶P𝐷P))) → (((𝑧 +P 𝐵) = (𝑤 +P 𝐴) ∧ (𝑢 +P 𝐶) = (𝑣 +P 𝐷)) → ((𝑧 +P 𝑢) +P (𝐵 +P 𝐶)) = ((𝑤 +P 𝑣) +P (𝐴 +P 𝐷))))
659, 64sylbid 139 . . 3 ((((𝑧P𝑤P) ∧ (𝐴P𝐵P)) ∧ ((𝑣P𝑢P) ∧ (𝐶P𝐷P))) → (([⟨𝑧, 𝑤⟩] ~R = [⟨𝐴, 𝐵⟩] ~R ∧ [⟨𝑣, 𝑢⟩] ~R = [⟨𝐶, 𝐷⟩] ~R ) → ((𝑧 +P 𝑢) +P (𝐵 +P 𝐶)) = ((𝑤 +P 𝑣) +P (𝐴 +P 𝐷))))
66 ltaprg 6717 . . . . 5 ((𝑥P𝑦P𝑓P) → (𝑥<P 𝑦 ↔ (𝑓 +P 𝑥)<P (𝑓 +P 𝑦)))
6766adantl 262 . . . 4 (((((𝑧P𝑤P) ∧ (𝐴P𝐵P)) ∧ ((𝑣P𝑢P) ∧ (𝐶P𝐷P))) ∧ (𝑥P𝑦P𝑓P)) → (𝑥<P 𝑦 ↔ (𝑓 +P 𝑥)<P (𝑓 +P 𝑦)))
68 addclpr 6635 . . . . 5 ((𝑧P𝑢P) → (𝑧 +P 𝑢) ∈ P)
6924, 12, 68syl2anc 391 . . . 4 ((((𝑧P𝑤P) ∧ (𝐴P𝐵P)) ∧ ((𝑣P𝑢P) ∧ (𝐶P𝐷P))) → (𝑧 +P 𝑢) ∈ P)
7030simprd 107 . . . 4 ((((𝑧P𝑤P) ∧ (𝐴P𝐵P)) ∧ ((𝑣P𝑢P) ∧ (𝐶P𝐷P))) → (𝑤 +P 𝑣) ∈ P)
71 addcomprg 6676 . . . . 5 ((𝑥P𝑦P) → (𝑥 +P 𝑦) = (𝑦 +P 𝑥))
7271adantl 262 . . . 4 (((((𝑧P𝑤P) ∧ (𝐴P𝐵P)) ∧ ((𝑣P𝑢P) ∧ (𝐶P𝐷P))) ∧ (𝑥P𝑦P)) → (𝑥 +P 𝑦) = (𝑦 +P 𝑥))
7367, 69, 31, 70, 72, 54caovord3d 5671 . . 3 ((((𝑧P𝑤P) ∧ (𝐴P𝐵P)) ∧ ((𝑣P𝑢P) ∧ (𝐶P𝐷P))) → (((𝑧 +P 𝑢) +P (𝐵 +P 𝐶)) = ((𝑤 +P 𝑣) +P (𝐴 +P 𝐷)) → ((𝑧 +P 𝑢)<P (𝑤 +P 𝑣) ↔ (𝐴 +P 𝐷)<P (𝐵 +P 𝐶))))
7465, 73syld 40 . 2 ((((𝑧P𝑤P) ∧ (𝐴P𝐵P)) ∧ ((𝑣P𝑢P) ∧ (𝐶P𝐷P))) → (([⟨𝑧, 𝑤⟩] ~R = [⟨𝐴, 𝐵⟩] ~R ∧ [⟨𝑣, 𝑢⟩] ~R = [⟨𝐶, 𝐷⟩] ~R ) → ((𝑧 +P 𝑢)<P (𝑤 +P 𝑣) ↔ (𝐴 +P 𝐷)<P (𝐵 +P 𝐶))))
751, 2, 3, 4, 74brecop 6196 1 (((𝐴P𝐵P) ∧ (𝐶P𝐷P)) → ([⟨𝐴, 𝐵⟩] ~R <R [⟨𝐶, 𝐷⟩] ~R ↔ (𝐴 +P 𝐷)<P (𝐵 +P 𝐶)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 97  wb 98  w3a 885   = wceq 1243  wcel 1393  cop 3378   class class class wbr 3764  (class class class)co 5512  [cec 6104  Pcnp 6389   +P cpp 6391  <P cltp 6393   ~R cer 6394  Rcnr 6395   <R cltr 6401
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-nul 3883  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-iinf 4311
This theorem depends on definitions:  df-bi 110  df-dc 743  df-3or 886  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-ral 2311  df-rex 2312  df-reu 2313  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-int 3616  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-tr 3855  df-eprel 4026  df-id 4030  df-po 4033  df-iso 4034  df-iord 4103  df-on 4105  df-suc 4108  df-iom 4314  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-1st 5767  df-2nd 5768  df-recs 5920  df-irdg 5957  df-1o 6001  df-2o 6002  df-oadd 6005  df-omul 6006  df-er 6106  df-ec 6108  df-qs 6112  df-ni 6402  df-pli 6403  df-mi 6404  df-lti 6405  df-plpq 6442  df-mpq 6443  df-enq 6445  df-nqqs 6446  df-plqqs 6447  df-mqqs 6448  df-1nqqs 6449  df-rq 6450  df-ltnqqs 6451  df-enq0 6522  df-nq0 6523  df-0nq0 6524  df-plq0 6525  df-mq0 6526  df-inp 6564  df-iplp 6566  df-iltp 6568  df-enr 6811  df-nr 6812  df-ltr 6815
This theorem is referenced by:  gt0srpr  6833  lttrsr  6847  ltposr  6848  ltsosr  6849  0lt1sr  6850  ltasrg  6855  aptisr  6863  mulextsr1  6865  archsr  6866  prsrlt  6871  pitoregt0  6925
  Copyright terms: Public domain W3C validator