ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltexprlemrl GIF version

Theorem ltexprlemrl 6708
Description: Lemma for ltexpri 6711. Reverse directon of our result for lower cuts. (Contributed by Jim Kingdon, 17-Dec-2019.)
Hypothesis
Ref Expression
ltexprlem.1 𝐶 = ⟨{𝑥Q ∣ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st𝐵))}, {𝑥Q ∣ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd𝐵))}⟩
Assertion
Ref Expression
ltexprlemrl (𝐴<P 𝐵 → (1st𝐵) ⊆ (1st ‘(𝐴 +P 𝐶)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦

Proof of Theorem ltexprlemrl
Dummy variables 𝑧 𝑤 𝑢 𝑣 𝑓 𝑔 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltrelpr 6603 . . . . . . . 8 <P ⊆ (P × P)
21brel 4392 . . . . . . 7 (𝐴<P 𝐵 → (𝐴P𝐵P))
32simprd 107 . . . . . 6 (𝐴<P 𝐵𝐵P)
4 prop 6573 . . . . . 6 (𝐵P → ⟨(1st𝐵), (2nd𝐵)⟩ ∈ P)
53, 4syl 14 . . . . 5 (𝐴<P 𝐵 → ⟨(1st𝐵), (2nd𝐵)⟩ ∈ P)
6 prnmaddl 6588 . . . . 5 ((⟨(1st𝐵), (2nd𝐵)⟩ ∈ P𝑤 ∈ (1st𝐵)) → ∃𝑣Q (𝑤 +Q 𝑣) ∈ (1st𝐵))
75, 6sylan 267 . . . 4 ((𝐴<P 𝐵𝑤 ∈ (1st𝐵)) → ∃𝑣Q (𝑤 +Q 𝑣) ∈ (1st𝐵))
82simpld 105 . . . . . . . 8 (𝐴<P 𝐵𝐴P)
9 prop 6573 . . . . . . . 8 (𝐴P → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ P)
108, 9syl 14 . . . . . . 7 (𝐴<P 𝐵 → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ P)
11 prarloc 6601 . . . . . . 7 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑣Q) → ∃𝑧 ∈ (1st𝐴)∃𝑢 ∈ (2nd𝐴)𝑢 <Q (𝑧 +Q 𝑣))
1210, 11sylan 267 . . . . . 6 ((𝐴<P 𝐵𝑣Q) → ∃𝑧 ∈ (1st𝐴)∃𝑢 ∈ (2nd𝐴)𝑢 <Q (𝑧 +Q 𝑣))
1312ad2ant2r 478 . . . . 5 (((𝐴<P 𝐵𝑤 ∈ (1st𝐵)) ∧ (𝑣Q ∧ (𝑤 +Q 𝑣) ∈ (1st𝐵))) → ∃𝑧 ∈ (1st𝐴)∃𝑢 ∈ (2nd𝐴)𝑢 <Q (𝑧 +Q 𝑣))
14 simplll 485 . . . . . . . . . . 11 ((((𝐴<P 𝐵𝑤 ∈ (1st𝐵)) ∧ (𝑣Q ∧ (𝑤 +Q 𝑣) ∈ (1st𝐵))) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) → 𝐴<P 𝐵)
1514adantr 261 . . . . . . . . . 10 (((((𝐴<P 𝐵𝑤 ∈ (1st𝐵)) ∧ (𝑣Q ∧ (𝑤 +Q 𝑣) ∈ (1st𝐵))) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) ∧ 𝑢 <Q (𝑧 +Q 𝑣)) → 𝐴<P 𝐵)
16 simplrl 487 . . . . . . . . . 10 (((((𝐴<P 𝐵𝑤 ∈ (1st𝐵)) ∧ (𝑣Q ∧ (𝑤 +Q 𝑣) ∈ (1st𝐵))) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) ∧ 𝑢 <Q (𝑧 +Q 𝑣)) → 𝑧 ∈ (1st𝐴))
17 elprnql 6579 . . . . . . . . . . 11 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑧 ∈ (1st𝐴)) → 𝑧Q)
1810, 17sylan 267 . . . . . . . . . 10 ((𝐴<P 𝐵𝑧 ∈ (1st𝐴)) → 𝑧Q)
1915, 16, 18syl2anc 391 . . . . . . . . 9 (((((𝐴<P 𝐵𝑤 ∈ (1st𝐵)) ∧ (𝑣Q ∧ (𝑤 +Q 𝑣) ∈ (1st𝐵))) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) ∧ 𝑢 <Q (𝑧 +Q 𝑣)) → 𝑧Q)
20 elprnql 6579 . . . . . . . . . . 11 ((⟨(1st𝐵), (2nd𝐵)⟩ ∈ P𝑤 ∈ (1st𝐵)) → 𝑤Q)
215, 20sylan 267 . . . . . . . . . 10 ((𝐴<P 𝐵𝑤 ∈ (1st𝐵)) → 𝑤Q)
2221ad3antrrr 461 . . . . . . . . 9 (((((𝐴<P 𝐵𝑤 ∈ (1st𝐵)) ∧ (𝑣Q ∧ (𝑤 +Q 𝑣) ∈ (1st𝐵))) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) ∧ 𝑢 <Q (𝑧 +Q 𝑣)) → 𝑤Q)
23 nqtri3or 6494 . . . . . . . . 9 ((𝑧Q𝑤Q) → (𝑧 <Q 𝑤𝑧 = 𝑤𝑤 <Q 𝑧))
2419, 22, 23syl2anc 391 . . . . . . . 8 (((((𝐴<P 𝐵𝑤 ∈ (1st𝐵)) ∧ (𝑣Q ∧ (𝑤 +Q 𝑣) ∈ (1st𝐵))) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) ∧ 𝑢 <Q (𝑧 +Q 𝑣)) → (𝑧 <Q 𝑤𝑧 = 𝑤𝑤 <Q 𝑧))
25 ltexnqq 6506 . . . . . . . . . . . . 13 ((𝑧Q𝑤Q) → (𝑧 <Q 𝑤 ↔ ∃𝑠Q (𝑧 +Q 𝑠) = 𝑤))
2619, 22, 25syl2anc 391 . . . . . . . . . . . 12 (((((𝐴<P 𝐵𝑤 ∈ (1st𝐵)) ∧ (𝑣Q ∧ (𝑤 +Q 𝑣) ∈ (1st𝐵))) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) ∧ 𝑢 <Q (𝑧 +Q 𝑣)) → (𝑧 <Q 𝑤 ↔ ∃𝑠Q (𝑧 +Q 𝑠) = 𝑤))
2726biimpa 280 . . . . . . . . . . 11 ((((((𝐴<P 𝐵𝑤 ∈ (1st𝐵)) ∧ (𝑣Q ∧ (𝑤 +Q 𝑣) ∈ (1st𝐵))) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) ∧ 𝑢 <Q (𝑧 +Q 𝑣)) ∧ 𝑧 <Q 𝑤) → ∃𝑠Q (𝑧 +Q 𝑠) = 𝑤)
28 simprr 484 . . . . . . . . . . . 12 (((((((𝐴<P 𝐵𝑤 ∈ (1st𝐵)) ∧ (𝑣Q ∧ (𝑤 +Q 𝑣) ∈ (1st𝐵))) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) ∧ 𝑢 <Q (𝑧 +Q 𝑣)) ∧ 𝑧 <Q 𝑤) ∧ (𝑠Q ∧ (𝑧 +Q 𝑠) = 𝑤)) → (𝑧 +Q 𝑠) = 𝑤)
2916ad2antrr 457 . . . . . . . . . . . . 13 (((((((𝐴<P 𝐵𝑤 ∈ (1st𝐵)) ∧ (𝑣Q ∧ (𝑤 +Q 𝑣) ∈ (1st𝐵))) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) ∧ 𝑢 <Q (𝑧 +Q 𝑣)) ∧ 𝑧 <Q 𝑤) ∧ (𝑠Q ∧ (𝑧 +Q 𝑠) = 𝑤)) → 𝑧 ∈ (1st𝐴))
30 simprl 483 . . . . . . . . . . . . . 14 (((((((𝐴<P 𝐵𝑤 ∈ (1st𝐵)) ∧ (𝑣Q ∧ (𝑤 +Q 𝑣) ∈ (1st𝐵))) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) ∧ 𝑢 <Q (𝑧 +Q 𝑣)) ∧ 𝑧 <Q 𝑤) ∧ (𝑠Q ∧ (𝑧 +Q 𝑠) = 𝑤)) → 𝑠Q)
31 simpr 103 . . . . . . . . . . . . . . . . 17 (((((𝐴<P 𝐵𝑤 ∈ (1st𝐵)) ∧ (𝑣Q ∧ (𝑤 +Q 𝑣) ∈ (1st𝐵))) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) ∧ 𝑢 <Q (𝑧 +Q 𝑣)) → 𝑢 <Q (𝑧 +Q 𝑣))
32 simplrr 488 . . . . . . . . . . . . . . . . . 18 (((((𝐴<P 𝐵𝑤 ∈ (1st𝐵)) ∧ (𝑣Q ∧ (𝑤 +Q 𝑣) ∈ (1st𝐵))) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) ∧ 𝑢 <Q (𝑧 +Q 𝑣)) → 𝑢 ∈ (2nd𝐴))
33 prcunqu 6583 . . . . . . . . . . . . . . . . . . 19 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑢 ∈ (2nd𝐴)) → (𝑢 <Q (𝑧 +Q 𝑣) → (𝑧 +Q 𝑣) ∈ (2nd𝐴)))
3410, 33sylan 267 . . . . . . . . . . . . . . . . . 18 ((𝐴<P 𝐵𝑢 ∈ (2nd𝐴)) → (𝑢 <Q (𝑧 +Q 𝑣) → (𝑧 +Q 𝑣) ∈ (2nd𝐴)))
3515, 32, 34syl2anc 391 . . . . . . . . . . . . . . . . 17 (((((𝐴<P 𝐵𝑤 ∈ (1st𝐵)) ∧ (𝑣Q ∧ (𝑤 +Q 𝑣) ∈ (1st𝐵))) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) ∧ 𝑢 <Q (𝑧 +Q 𝑣)) → (𝑢 <Q (𝑧 +Q 𝑣) → (𝑧 +Q 𝑣) ∈ (2nd𝐴)))
3631, 35mpd 13 . . . . . . . . . . . . . . . 16 (((((𝐴<P 𝐵𝑤 ∈ (1st𝐵)) ∧ (𝑣Q ∧ (𝑤 +Q 𝑣) ∈ (1st𝐵))) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) ∧ 𝑢 <Q (𝑧 +Q 𝑣)) → (𝑧 +Q 𝑣) ∈ (2nd𝐴))
3736ad2antrr 457 . . . . . . . . . . . . . . 15 (((((((𝐴<P 𝐵𝑤 ∈ (1st𝐵)) ∧ (𝑣Q ∧ (𝑤 +Q 𝑣) ∈ (1st𝐵))) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) ∧ 𝑢 <Q (𝑧 +Q 𝑣)) ∧ 𝑧 <Q 𝑤) ∧ (𝑠Q ∧ (𝑧 +Q 𝑠) = 𝑤)) → (𝑧 +Q 𝑣) ∈ (2nd𝐴))
3819ad2antrr 457 . . . . . . . . . . . . . . . . 17 (((((((𝐴<P 𝐵𝑤 ∈ (1st𝐵)) ∧ (𝑣Q ∧ (𝑤 +Q 𝑣) ∈ (1st𝐵))) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) ∧ 𝑢 <Q (𝑧 +Q 𝑣)) ∧ 𝑧 <Q 𝑤) ∧ (𝑠Q ∧ (𝑧 +Q 𝑠) = 𝑤)) → 𝑧Q)
39 simplrl 487 . . . . . . . . . . . . . . . . . 18 ((((𝐴<P 𝐵𝑤 ∈ (1st𝐵)) ∧ (𝑣Q ∧ (𝑤 +Q 𝑣) ∈ (1st𝐵))) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) → 𝑣Q)
4039ad3antrrr 461 . . . . . . . . . . . . . . . . 17 (((((((𝐴<P 𝐵𝑤 ∈ (1st𝐵)) ∧ (𝑣Q ∧ (𝑤 +Q 𝑣) ∈ (1st𝐵))) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) ∧ 𝑢 <Q (𝑧 +Q 𝑣)) ∧ 𝑧 <Q 𝑤) ∧ (𝑠Q ∧ (𝑧 +Q 𝑠) = 𝑤)) → 𝑣Q)
41 addcomnqg 6479 . . . . . . . . . . . . . . . . . 18 ((𝑓Q𝑔Q) → (𝑓 +Q 𝑔) = (𝑔 +Q 𝑓))
4241adantl 262 . . . . . . . . . . . . . . . . 17 ((((((((𝐴<P 𝐵𝑤 ∈ (1st𝐵)) ∧ (𝑣Q ∧ (𝑤 +Q 𝑣) ∈ (1st𝐵))) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) ∧ 𝑢 <Q (𝑧 +Q 𝑣)) ∧ 𝑧 <Q 𝑤) ∧ (𝑠Q ∧ (𝑧 +Q 𝑠) = 𝑤)) ∧ (𝑓Q𝑔Q)) → (𝑓 +Q 𝑔) = (𝑔 +Q 𝑓))
43 addassnqg 6480 . . . . . . . . . . . . . . . . . 18 ((𝑓Q𝑔QQ) → ((𝑓 +Q 𝑔) +Q ) = (𝑓 +Q (𝑔 +Q )))
4443adantl 262 . . . . . . . . . . . . . . . . 17 ((((((((𝐴<P 𝐵𝑤 ∈ (1st𝐵)) ∧ (𝑣Q ∧ (𝑤 +Q 𝑣) ∈ (1st𝐵))) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) ∧ 𝑢 <Q (𝑧 +Q 𝑣)) ∧ 𝑧 <Q 𝑤) ∧ (𝑠Q ∧ (𝑧 +Q 𝑠) = 𝑤)) ∧ (𝑓Q𝑔QQ)) → ((𝑓 +Q 𝑔) +Q ) = (𝑓 +Q (𝑔 +Q )))
4538, 40, 30, 42, 44caov32d 5681 . . . . . . . . . . . . . . . 16 (((((((𝐴<P 𝐵𝑤 ∈ (1st𝐵)) ∧ (𝑣Q ∧ (𝑤 +Q 𝑣) ∈ (1st𝐵))) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) ∧ 𝑢 <Q (𝑧 +Q 𝑣)) ∧ 𝑧 <Q 𝑤) ∧ (𝑠Q ∧ (𝑧 +Q 𝑠) = 𝑤)) → ((𝑧 +Q 𝑣) +Q 𝑠) = ((𝑧 +Q 𝑠) +Q 𝑣))
46 simplrr 488 . . . . . . . . . . . . . . . . . 18 ((((𝐴<P 𝐵𝑤 ∈ (1st𝐵)) ∧ (𝑣Q ∧ (𝑤 +Q 𝑣) ∈ (1st𝐵))) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) → (𝑤 +Q 𝑣) ∈ (1st𝐵))
4746ad3antrrr 461 . . . . . . . . . . . . . . . . 17 (((((((𝐴<P 𝐵𝑤 ∈ (1st𝐵)) ∧ (𝑣Q ∧ (𝑤 +Q 𝑣) ∈ (1st𝐵))) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) ∧ 𝑢 <Q (𝑧 +Q 𝑣)) ∧ 𝑧 <Q 𝑤) ∧ (𝑠Q ∧ (𝑧 +Q 𝑠) = 𝑤)) → (𝑤 +Q 𝑣) ∈ (1st𝐵))
48 oveq1 5519 . . . . . . . . . . . . . . . . . . 19 ((𝑧 +Q 𝑠) = 𝑤 → ((𝑧 +Q 𝑠) +Q 𝑣) = (𝑤 +Q 𝑣))
4948eleq1d 2106 . . . . . . . . . . . . . . . . . 18 ((𝑧 +Q 𝑠) = 𝑤 → (((𝑧 +Q 𝑠) +Q 𝑣) ∈ (1st𝐵) ↔ (𝑤 +Q 𝑣) ∈ (1st𝐵)))
5028, 49syl 14 . . . . . . . . . . . . . . . . 17 (((((((𝐴<P 𝐵𝑤 ∈ (1st𝐵)) ∧ (𝑣Q ∧ (𝑤 +Q 𝑣) ∈ (1st𝐵))) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) ∧ 𝑢 <Q (𝑧 +Q 𝑣)) ∧ 𝑧 <Q 𝑤) ∧ (𝑠Q ∧ (𝑧 +Q 𝑠) = 𝑤)) → (((𝑧 +Q 𝑠) +Q 𝑣) ∈ (1st𝐵) ↔ (𝑤 +Q 𝑣) ∈ (1st𝐵)))
5147, 50mpbird 156 . . . . . . . . . . . . . . . 16 (((((((𝐴<P 𝐵𝑤 ∈ (1st𝐵)) ∧ (𝑣Q ∧ (𝑤 +Q 𝑣) ∈ (1st𝐵))) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) ∧ 𝑢 <Q (𝑧 +Q 𝑣)) ∧ 𝑧 <Q 𝑤) ∧ (𝑠Q ∧ (𝑧 +Q 𝑠) = 𝑤)) → ((𝑧 +Q 𝑠) +Q 𝑣) ∈ (1st𝐵))
5245, 51eqeltrd 2114 . . . . . . . . . . . . . . 15 (((((((𝐴<P 𝐵𝑤 ∈ (1st𝐵)) ∧ (𝑣Q ∧ (𝑤 +Q 𝑣) ∈ (1st𝐵))) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) ∧ 𝑢 <Q (𝑧 +Q 𝑣)) ∧ 𝑧 <Q 𝑤) ∧ (𝑠Q ∧ (𝑧 +Q 𝑠) = 𝑤)) → ((𝑧 +Q 𝑣) +Q 𝑠) ∈ (1st𝐵))
53 eleq1 2100 . . . . . . . . . . . . . . . . . 18 (𝑦 = (𝑧 +Q 𝑣) → (𝑦 ∈ (2nd𝐴) ↔ (𝑧 +Q 𝑣) ∈ (2nd𝐴)))
54 oveq1 5519 . . . . . . . . . . . . . . . . . . 19 (𝑦 = (𝑧 +Q 𝑣) → (𝑦 +Q 𝑠) = ((𝑧 +Q 𝑣) +Q 𝑠))
5554eleq1d 2106 . . . . . . . . . . . . . . . . . 18 (𝑦 = (𝑧 +Q 𝑣) → ((𝑦 +Q 𝑠) ∈ (1st𝐵) ↔ ((𝑧 +Q 𝑣) +Q 𝑠) ∈ (1st𝐵)))
5653, 55anbi12d 442 . . . . . . . . . . . . . . . . 17 (𝑦 = (𝑧 +Q 𝑣) → ((𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑠) ∈ (1st𝐵)) ↔ ((𝑧 +Q 𝑣) ∈ (2nd𝐴) ∧ ((𝑧 +Q 𝑣) +Q 𝑠) ∈ (1st𝐵))))
5756spcegv 2641 . . . . . . . . . . . . . . . 16 ((𝑧 +Q 𝑣) ∈ (2nd𝐴) → (((𝑧 +Q 𝑣) ∈ (2nd𝐴) ∧ ((𝑧 +Q 𝑣) +Q 𝑠) ∈ (1st𝐵)) → ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑠) ∈ (1st𝐵))))
5857anabsi5 513 . . . . . . . . . . . . . . 15 (((𝑧 +Q 𝑣) ∈ (2nd𝐴) ∧ ((𝑧 +Q 𝑣) +Q 𝑠) ∈ (1st𝐵)) → ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑠) ∈ (1st𝐵)))
5937, 52, 58syl2anc 391 . . . . . . . . . . . . . 14 (((((((𝐴<P 𝐵𝑤 ∈ (1st𝐵)) ∧ (𝑣Q ∧ (𝑤 +Q 𝑣) ∈ (1st𝐵))) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) ∧ 𝑢 <Q (𝑧 +Q 𝑣)) ∧ 𝑧 <Q 𝑤) ∧ (𝑠Q ∧ (𝑧 +Q 𝑠) = 𝑤)) → ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑠) ∈ (1st𝐵)))
60 ltexprlem.1 . . . . . . . . . . . . . . 15 𝐶 = ⟨{𝑥Q ∣ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st𝐵))}, {𝑥Q ∣ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd𝐵))}⟩
6160ltexprlemell 6696 . . . . . . . . . . . . . 14 (𝑠 ∈ (1st𝐶) ↔ (𝑠Q ∧ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑠) ∈ (1st𝐵))))
6230, 59, 61sylanbrc 394 . . . . . . . . . . . . 13 (((((((𝐴<P 𝐵𝑤 ∈ (1st𝐵)) ∧ (𝑣Q ∧ (𝑤 +Q 𝑣) ∈ (1st𝐵))) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) ∧ 𝑢 <Q (𝑧 +Q 𝑣)) ∧ 𝑧 <Q 𝑤) ∧ (𝑠Q ∧ (𝑧 +Q 𝑠) = 𝑤)) → 𝑠 ∈ (1st𝐶))
6315, 8syl 14 . . . . . . . . . . . . . . 15 (((((𝐴<P 𝐵𝑤 ∈ (1st𝐵)) ∧ (𝑣Q ∧ (𝑤 +Q 𝑣) ∈ (1st𝐵))) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) ∧ 𝑢 <Q (𝑧 +Q 𝑣)) → 𝐴P)
6463ad2antrr 457 . . . . . . . . . . . . . 14 (((((((𝐴<P 𝐵𝑤 ∈ (1st𝐵)) ∧ (𝑣Q ∧ (𝑤 +Q 𝑣) ∈ (1st𝐵))) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) ∧ 𝑢 <Q (𝑧 +Q 𝑣)) ∧ 𝑧 <Q 𝑤) ∧ (𝑠Q ∧ (𝑧 +Q 𝑠) = 𝑤)) → 𝐴P)
6560ltexprlempr 6706 . . . . . . . . . . . . . . . 16 (𝐴<P 𝐵𝐶P)
6615, 65syl 14 . . . . . . . . . . . . . . 15 (((((𝐴<P 𝐵𝑤 ∈ (1st𝐵)) ∧ (𝑣Q ∧ (𝑤 +Q 𝑣) ∈ (1st𝐵))) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) ∧ 𝑢 <Q (𝑧 +Q 𝑣)) → 𝐶P)
6766ad2antrr 457 . . . . . . . . . . . . . 14 (((((((𝐴<P 𝐵𝑤 ∈ (1st𝐵)) ∧ (𝑣Q ∧ (𝑤 +Q 𝑣) ∈ (1st𝐵))) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) ∧ 𝑢 <Q (𝑧 +Q 𝑣)) ∧ 𝑧 <Q 𝑤) ∧ (𝑠Q ∧ (𝑧 +Q 𝑠) = 𝑤)) → 𝐶P)
68 df-iplp 6566 . . . . . . . . . . . . . . 15 +P = (𝑥P, 𝑤P ↦ ⟨{𝑧Q ∣ ∃𝑓Q𝑣Q (𝑓 ∈ (1st𝑥) ∧ 𝑣 ∈ (1st𝑤) ∧ 𝑧 = (𝑓 +Q 𝑣))}, {𝑧Q ∣ ∃𝑓Q𝑣Q (𝑓 ∈ (2nd𝑥) ∧ 𝑣 ∈ (2nd𝑤) ∧ 𝑧 = (𝑓 +Q 𝑣))}⟩)
69 addclnq 6473 . . . . . . . . . . . . . . 15 ((𝑓Q𝑣Q) → (𝑓 +Q 𝑣) ∈ Q)
7068, 69genpprecll 6612 . . . . . . . . . . . . . 14 ((𝐴P𝐶P) → ((𝑧 ∈ (1st𝐴) ∧ 𝑠 ∈ (1st𝐶)) → (𝑧 +Q 𝑠) ∈ (1st ‘(𝐴 +P 𝐶))))
7164, 67, 70syl2anc 391 . . . . . . . . . . . . 13 (((((((𝐴<P 𝐵𝑤 ∈ (1st𝐵)) ∧ (𝑣Q ∧ (𝑤 +Q 𝑣) ∈ (1st𝐵))) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) ∧ 𝑢 <Q (𝑧 +Q 𝑣)) ∧ 𝑧 <Q 𝑤) ∧ (𝑠Q ∧ (𝑧 +Q 𝑠) = 𝑤)) → ((𝑧 ∈ (1st𝐴) ∧ 𝑠 ∈ (1st𝐶)) → (𝑧 +Q 𝑠) ∈ (1st ‘(𝐴 +P 𝐶))))
7229, 62, 71mp2and 409 . . . . . . . . . . . 12 (((((((𝐴<P 𝐵𝑤 ∈ (1st𝐵)) ∧ (𝑣Q ∧ (𝑤 +Q 𝑣) ∈ (1st𝐵))) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) ∧ 𝑢 <Q (𝑧 +Q 𝑣)) ∧ 𝑧 <Q 𝑤) ∧ (𝑠Q ∧ (𝑧 +Q 𝑠) = 𝑤)) → (𝑧 +Q 𝑠) ∈ (1st ‘(𝐴 +P 𝐶)))
7328, 72eqeltrrd 2115 . . . . . . . . . . 11 (((((((𝐴<P 𝐵𝑤 ∈ (1st𝐵)) ∧ (𝑣Q ∧ (𝑤 +Q 𝑣) ∈ (1st𝐵))) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) ∧ 𝑢 <Q (𝑧 +Q 𝑣)) ∧ 𝑧 <Q 𝑤) ∧ (𝑠Q ∧ (𝑧 +Q 𝑠) = 𝑤)) → 𝑤 ∈ (1st ‘(𝐴 +P 𝐶)))
7427, 73rexlimddv 2437 . . . . . . . . . 10 ((((((𝐴<P 𝐵𝑤 ∈ (1st𝐵)) ∧ (𝑣Q ∧ (𝑤 +Q 𝑣) ∈ (1st𝐵))) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) ∧ 𝑢 <Q (𝑧 +Q 𝑣)) ∧ 𝑧 <Q 𝑤) → 𝑤 ∈ (1st ‘(𝐴 +P 𝐶)))
7574ex 108 . . . . . . . . 9 (((((𝐴<P 𝐵𝑤 ∈ (1st𝐵)) ∧ (𝑣Q ∧ (𝑤 +Q 𝑣) ∈ (1st𝐵))) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) ∧ 𝑢 <Q (𝑧 +Q 𝑣)) → (𝑧 <Q 𝑤𝑤 ∈ (1st ‘(𝐴 +P 𝐶))))
7614ad2antrr 457 . . . . . . . . . . 11 ((((((𝐴<P 𝐵𝑤 ∈ (1st𝐵)) ∧ (𝑣Q ∧ (𝑤 +Q 𝑣) ∈ (1st𝐵))) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) ∧ 𝑢 <Q (𝑧 +Q 𝑣)) ∧ 𝑧 = 𝑤) → 𝐴<P 𝐵)
77 simpr 103 . . . . . . . . . . . 12 ((((((𝐴<P 𝐵𝑤 ∈ (1st𝐵)) ∧ (𝑣Q ∧ (𝑤 +Q 𝑣) ∈ (1st𝐵))) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) ∧ 𝑢 <Q (𝑧 +Q 𝑣)) ∧ 𝑧 = 𝑤) → 𝑧 = 𝑤)
7816adantr 261 . . . . . . . . . . . 12 ((((((𝐴<P 𝐵𝑤 ∈ (1st𝐵)) ∧ (𝑣Q ∧ (𝑤 +Q 𝑣) ∈ (1st𝐵))) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) ∧ 𝑢 <Q (𝑧 +Q 𝑣)) ∧ 𝑧 = 𝑤) → 𝑧 ∈ (1st𝐴))
7977, 78eqeltrrd 2115 . . . . . . . . . . 11 ((((((𝐴<P 𝐵𝑤 ∈ (1st𝐵)) ∧ (𝑣Q ∧ (𝑤 +Q 𝑣) ∈ (1st𝐵))) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) ∧ 𝑢 <Q (𝑧 +Q 𝑣)) ∧ 𝑧 = 𝑤) → 𝑤 ∈ (1st𝐴))
80 ltaddpr 6695 . . . . . . . . . . . . 13 ((𝐴P𝐶P) → 𝐴<P (𝐴 +P 𝐶))
818, 65, 80syl2anc 391 . . . . . . . . . . . 12 (𝐴<P 𝐵𝐴<P (𝐴 +P 𝐶))
82 ltprordil 6687 . . . . . . . . . . . . 13 (𝐴<P (𝐴 +P 𝐶) → (1st𝐴) ⊆ (1st ‘(𝐴 +P 𝐶)))
8382sseld 2944 . . . . . . . . . . . 12 (𝐴<P (𝐴 +P 𝐶) → (𝑤 ∈ (1st𝐴) → 𝑤 ∈ (1st ‘(𝐴 +P 𝐶))))
8481, 83syl 14 . . . . . . . . . . 11 (𝐴<P 𝐵 → (𝑤 ∈ (1st𝐴) → 𝑤 ∈ (1st ‘(𝐴 +P 𝐶))))
8576, 79, 84sylc 56 . . . . . . . . . 10 ((((((𝐴<P 𝐵𝑤 ∈ (1st𝐵)) ∧ (𝑣Q ∧ (𝑤 +Q 𝑣) ∈ (1st𝐵))) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) ∧ 𝑢 <Q (𝑧 +Q 𝑣)) ∧ 𝑧 = 𝑤) → 𝑤 ∈ (1st ‘(𝐴 +P 𝐶)))
8685ex 108 . . . . . . . . 9 (((((𝐴<P 𝐵𝑤 ∈ (1st𝐵)) ∧ (𝑣Q ∧ (𝑤 +Q 𝑣) ∈ (1st𝐵))) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) ∧ 𝑢 <Q (𝑧 +Q 𝑣)) → (𝑧 = 𝑤𝑤 ∈ (1st ‘(𝐴 +P 𝐶))))
87 prcdnql 6582 . . . . . . . . . . . 12 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑧 ∈ (1st𝐴)) → (𝑤 <Q 𝑧𝑤 ∈ (1st𝐴)))
8810, 87sylan 267 . . . . . . . . . . 11 ((𝐴<P 𝐵𝑧 ∈ (1st𝐴)) → (𝑤 <Q 𝑧𝑤 ∈ (1st𝐴)))
8915, 16, 88syl2anc 391 . . . . . . . . . 10 (((((𝐴<P 𝐵𝑤 ∈ (1st𝐵)) ∧ (𝑣Q ∧ (𝑤 +Q 𝑣) ∈ (1st𝐵))) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) ∧ 𝑢 <Q (𝑧 +Q 𝑣)) → (𝑤 <Q 𝑧𝑤 ∈ (1st𝐴)))
9015, 89, 84sylsyld 52 . . . . . . . . 9 (((((𝐴<P 𝐵𝑤 ∈ (1st𝐵)) ∧ (𝑣Q ∧ (𝑤 +Q 𝑣) ∈ (1st𝐵))) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) ∧ 𝑢 <Q (𝑧 +Q 𝑣)) → (𝑤 <Q 𝑧𝑤 ∈ (1st ‘(𝐴 +P 𝐶))))
9175, 86, 903jaod 1199 . . . . . . . 8 (((((𝐴<P 𝐵𝑤 ∈ (1st𝐵)) ∧ (𝑣Q ∧ (𝑤 +Q 𝑣) ∈ (1st𝐵))) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) ∧ 𝑢 <Q (𝑧 +Q 𝑣)) → ((𝑧 <Q 𝑤𝑧 = 𝑤𝑤 <Q 𝑧) → 𝑤 ∈ (1st ‘(𝐴 +P 𝐶))))
9224, 91mpd 13 . . . . . . 7 (((((𝐴<P 𝐵𝑤 ∈ (1st𝐵)) ∧ (𝑣Q ∧ (𝑤 +Q 𝑣) ∈ (1st𝐵))) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) ∧ 𝑢 <Q (𝑧 +Q 𝑣)) → 𝑤 ∈ (1st ‘(𝐴 +P 𝐶)))
9392ex 108 . . . . . 6 ((((𝐴<P 𝐵𝑤 ∈ (1st𝐵)) ∧ (𝑣Q ∧ (𝑤 +Q 𝑣) ∈ (1st𝐵))) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) → (𝑢 <Q (𝑧 +Q 𝑣) → 𝑤 ∈ (1st ‘(𝐴 +P 𝐶))))
9493rexlimdvva 2440 . . . . 5 (((𝐴<P 𝐵𝑤 ∈ (1st𝐵)) ∧ (𝑣Q ∧ (𝑤 +Q 𝑣) ∈ (1st𝐵))) → (∃𝑧 ∈ (1st𝐴)∃𝑢 ∈ (2nd𝐴)𝑢 <Q (𝑧 +Q 𝑣) → 𝑤 ∈ (1st ‘(𝐴 +P 𝐶))))
9513, 94mpd 13 . . . 4 (((𝐴<P 𝐵𝑤 ∈ (1st𝐵)) ∧ (𝑣Q ∧ (𝑤 +Q 𝑣) ∈ (1st𝐵))) → 𝑤 ∈ (1st ‘(𝐴 +P 𝐶)))
967, 95rexlimddv 2437 . . 3 ((𝐴<P 𝐵𝑤 ∈ (1st𝐵)) → 𝑤 ∈ (1st ‘(𝐴 +P 𝐶)))
9796ex 108 . 2 (𝐴<P 𝐵 → (𝑤 ∈ (1st𝐵) → 𝑤 ∈ (1st ‘(𝐴 +P 𝐶))))
9897ssrdv 2951 1 (𝐴<P 𝐵 → (1st𝐵) ⊆ (1st ‘(𝐴 +P 𝐶)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 97  wb 98  w3o 884  w3a 885   = wceq 1243  wex 1381  wcel 1393  wrex 2307  {crab 2310  wss 2917  cop 3378   class class class wbr 3764  cfv 4902  (class class class)co 5512  1st c1st 5765  2nd c2nd 5766  Qcnq 6378   +Q cplq 6380   <Q cltq 6383  Pcnp 6389   +P cpp 6391  <P cltp 6393
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-nul 3883  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-iinf 4311
This theorem depends on definitions:  df-bi 110  df-dc 743  df-3or 886  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-ral 2311  df-rex 2312  df-reu 2313  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-int 3616  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-tr 3855  df-eprel 4026  df-id 4030  df-po 4033  df-iso 4034  df-iord 4103  df-on 4105  df-suc 4108  df-iom 4314  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-1st 5767  df-2nd 5768  df-recs 5920  df-irdg 5957  df-1o 6001  df-2o 6002  df-oadd 6005  df-omul 6006  df-er 6106  df-ec 6108  df-qs 6112  df-ni 6402  df-pli 6403  df-mi 6404  df-lti 6405  df-plpq 6442  df-mpq 6443  df-enq 6445  df-nqqs 6446  df-plqqs 6447  df-mqqs 6448  df-1nqqs 6449  df-rq 6450  df-ltnqqs 6451  df-enq0 6522  df-nq0 6523  df-0nq0 6524  df-plq0 6525  df-mq0 6526  df-inp 6564  df-iplp 6566  df-iltp 6568
This theorem is referenced by:  ltexpri  6711
  Copyright terms: Public domain W3C validator