ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltexnqq GIF version

Theorem ltexnqq 6506
Description: Ordering on positive fractions in terms of existence of sum. Definition in Proposition 9-2.6 of [Gleason] p. 119. (Contributed by Jim Kingdon, 23-Sep-2019.)
Assertion
Ref Expression
ltexnqq ((𝐴Q𝐵Q) → (𝐴 <Q 𝐵 ↔ ∃𝑥Q (𝐴 +Q 𝑥) = 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem ltexnqq
Dummy variables 𝑓 𝑔 𝑦 𝑧 𝑤 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nqqs 6446 . . 3 Q = ((N × N) / ~Q )
2 breq1 3767 . . . 4 ([⟨𝑦, 𝑧⟩] ~Q = 𝐴 → ([⟨𝑦, 𝑧⟩] ~Q <Q [⟨𝑤, 𝑣⟩] ~Q𝐴 <Q [⟨𝑤, 𝑣⟩] ~Q ))
3 oveq1 5519 . . . . . 6 ([⟨𝑦, 𝑧⟩] ~Q = 𝐴 → ([⟨𝑦, 𝑧⟩] ~Q +Q 𝑥) = (𝐴 +Q 𝑥))
43eqeq1d 2048 . . . . 5 ([⟨𝑦, 𝑧⟩] ~Q = 𝐴 → (([⟨𝑦, 𝑧⟩] ~Q +Q 𝑥) = [⟨𝑤, 𝑣⟩] ~Q ↔ (𝐴 +Q 𝑥) = [⟨𝑤, 𝑣⟩] ~Q ))
54rexbidv 2327 . . . 4 ([⟨𝑦, 𝑧⟩] ~Q = 𝐴 → (∃𝑥Q ([⟨𝑦, 𝑧⟩] ~Q +Q 𝑥) = [⟨𝑤, 𝑣⟩] ~Q ↔ ∃𝑥Q (𝐴 +Q 𝑥) = [⟨𝑤, 𝑣⟩] ~Q ))
62, 5imbi12d 223 . . 3 ([⟨𝑦, 𝑧⟩] ~Q = 𝐴 → (([⟨𝑦, 𝑧⟩] ~Q <Q [⟨𝑤, 𝑣⟩] ~Q → ∃𝑥Q ([⟨𝑦, 𝑧⟩] ~Q +Q 𝑥) = [⟨𝑤, 𝑣⟩] ~Q ) ↔ (𝐴 <Q [⟨𝑤, 𝑣⟩] ~Q → ∃𝑥Q (𝐴 +Q 𝑥) = [⟨𝑤, 𝑣⟩] ~Q )))
7 breq2 3768 . . . 4 ([⟨𝑤, 𝑣⟩] ~Q = 𝐵 → (𝐴 <Q [⟨𝑤, 𝑣⟩] ~Q𝐴 <Q 𝐵))
8 eqeq2 2049 . . . . 5 ([⟨𝑤, 𝑣⟩] ~Q = 𝐵 → ((𝐴 +Q 𝑥) = [⟨𝑤, 𝑣⟩] ~Q ↔ (𝐴 +Q 𝑥) = 𝐵))
98rexbidv 2327 . . . 4 ([⟨𝑤, 𝑣⟩] ~Q = 𝐵 → (∃𝑥Q (𝐴 +Q 𝑥) = [⟨𝑤, 𝑣⟩] ~Q ↔ ∃𝑥Q (𝐴 +Q 𝑥) = 𝐵))
107, 9imbi12d 223 . . 3 ([⟨𝑤, 𝑣⟩] ~Q = 𝐵 → ((𝐴 <Q [⟨𝑤, 𝑣⟩] ~Q → ∃𝑥Q (𝐴 +Q 𝑥) = [⟨𝑤, 𝑣⟩] ~Q ) ↔ (𝐴 <Q 𝐵 → ∃𝑥Q (𝐴 +Q 𝑥) = 𝐵)))
11 ordpipqqs 6472 . . . 4 (((𝑦N𝑧N) ∧ (𝑤N𝑣N)) → ([⟨𝑦, 𝑧⟩] ~Q <Q [⟨𝑤, 𝑣⟩] ~Q ↔ (𝑦 ·N 𝑣) <N (𝑧 ·N 𝑤)))
12 mulclpi 6426 . . . . . . . . 9 ((𝑦N𝑣N) → (𝑦 ·N 𝑣) ∈ N)
13 mulclpi 6426 . . . . . . . . 9 ((𝑧N𝑤N) → (𝑧 ·N 𝑤) ∈ N)
1412, 13anim12i 321 . . . . . . . 8 (((𝑦N𝑣N) ∧ (𝑧N𝑤N)) → ((𝑦 ·N 𝑣) ∈ N ∧ (𝑧 ·N 𝑤) ∈ N))
1514an42s 523 . . . . . . 7 (((𝑦N𝑧N) ∧ (𝑤N𝑣N)) → ((𝑦 ·N 𝑣) ∈ N ∧ (𝑧 ·N 𝑤) ∈ N))
16 ltexpi 6435 . . . . . . 7 (((𝑦 ·N 𝑣) ∈ N ∧ (𝑧 ·N 𝑤) ∈ N) → ((𝑦 ·N 𝑣) <N (𝑧 ·N 𝑤) ↔ ∃𝑢N ((𝑦 ·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤)))
1715, 16syl 14 . . . . . 6 (((𝑦N𝑧N) ∧ (𝑤N𝑣N)) → ((𝑦 ·N 𝑣) <N (𝑧 ·N 𝑤) ↔ ∃𝑢N ((𝑦 ·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤)))
18 df-rex 2312 . . . . . 6 (∃𝑢N ((𝑦 ·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤) ↔ ∃𝑢(𝑢N ∧ ((𝑦 ·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤)))
1917, 18syl6bb 185 . . . . 5 (((𝑦N𝑧N) ∧ (𝑤N𝑣N)) → ((𝑦 ·N 𝑣) <N (𝑧 ·N 𝑤) ↔ ∃𝑢(𝑢N ∧ ((𝑦 ·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤))))
20 simpll 481 . . . . . . . . . . . 12 ((((𝑦N𝑧N) ∧ (𝑤N𝑣N)) ∧ 𝑢N) → (𝑦N𝑧N))
21 simpr 103 . . . . . . . . . . . 12 ((((𝑦N𝑧N) ∧ (𝑤N𝑣N)) ∧ 𝑢N) → 𝑢N)
22 simpr 103 . . . . . . . . . . . . . . 15 ((𝑦N𝑧N) → 𝑧N)
23 simpr 103 . . . . . . . . . . . . . . 15 ((𝑤N𝑣N) → 𝑣N)
2422, 23anim12i 321 . . . . . . . . . . . . . 14 (((𝑦N𝑧N) ∧ (𝑤N𝑣N)) → (𝑧N𝑣N))
2524adantr 261 . . . . . . . . . . . . 13 ((((𝑦N𝑧N) ∧ (𝑤N𝑣N)) ∧ 𝑢N) → (𝑧N𝑣N))
26 mulclpi 6426 . . . . . . . . . . . . 13 ((𝑧N𝑣N) → (𝑧 ·N 𝑣) ∈ N)
2725, 26syl 14 . . . . . . . . . . . 12 ((((𝑦N𝑧N) ∧ (𝑤N𝑣N)) ∧ 𝑢N) → (𝑧 ·N 𝑣) ∈ N)
2820, 21, 27jca32 293 . . . . . . . . . . 11 ((((𝑦N𝑧N) ∧ (𝑤N𝑣N)) ∧ 𝑢N) → ((𝑦N𝑧N) ∧ (𝑢N ∧ (𝑧 ·N 𝑣) ∈ N)))
2928adantrr 448 . . . . . . . . . 10 ((((𝑦N𝑧N) ∧ (𝑤N𝑣N)) ∧ (𝑢N ∧ ((𝑦 ·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤))) → ((𝑦N𝑧N) ∧ (𝑢N ∧ (𝑧 ·N 𝑣) ∈ N)))
30 addpipqqs 6468 . . . . . . . . . 10 (((𝑦N𝑧N) ∧ (𝑢N ∧ (𝑧 ·N 𝑣) ∈ N)) → ([⟨𝑦, 𝑧⟩] ~Q +Q [⟨𝑢, (𝑧 ·N 𝑣)⟩] ~Q ) = [⟨((𝑦 ·N (𝑧 ·N 𝑣)) +N (𝑧 ·N 𝑢)), (𝑧 ·N (𝑧 ·N 𝑣))⟩] ~Q )
3129, 30syl 14 . . . . . . . . 9 ((((𝑦N𝑧N) ∧ (𝑤N𝑣N)) ∧ (𝑢N ∧ ((𝑦 ·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤))) → ([⟨𝑦, 𝑧⟩] ~Q +Q [⟨𝑢, (𝑧 ·N 𝑣)⟩] ~Q ) = [⟨((𝑦 ·N (𝑧 ·N 𝑣)) +N (𝑧 ·N 𝑢)), (𝑧 ·N (𝑧 ·N 𝑣))⟩] ~Q )
32 simplll 485 . . . . . . . . . . . . . . 15 ((((𝑦N𝑧N) ∧ (𝑤N𝑣N)) ∧ (𝑢N ∧ ((𝑦 ·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤))) → 𝑦N)
33 simpllr 486 . . . . . . . . . . . . . . 15 ((((𝑦N𝑧N) ∧ (𝑤N𝑣N)) ∧ (𝑢N ∧ ((𝑦 ·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤))) → 𝑧N)
34 simplrr 488 . . . . . . . . . . . . . . 15 ((((𝑦N𝑧N) ∧ (𝑤N𝑣N)) ∧ (𝑢N ∧ ((𝑦 ·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤))) → 𝑣N)
35 mulcompig 6429 . . . . . . . . . . . . . . . 16 ((𝑓N𝑔N) → (𝑓 ·N 𝑔) = (𝑔 ·N 𝑓))
3635adantl 262 . . . . . . . . . . . . . . 15 (((((𝑦N𝑧N) ∧ (𝑤N𝑣N)) ∧ (𝑢N ∧ ((𝑦 ·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤))) ∧ (𝑓N𝑔N)) → (𝑓 ·N 𝑔) = (𝑔 ·N 𝑓))
37 mulasspig 6430 . . . . . . . . . . . . . . . 16 ((𝑓N𝑔NN) → ((𝑓 ·N 𝑔) ·N ) = (𝑓 ·N (𝑔 ·N )))
3837adantl 262 . . . . . . . . . . . . . . 15 (((((𝑦N𝑧N) ∧ (𝑤N𝑣N)) ∧ (𝑢N ∧ ((𝑦 ·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤))) ∧ (𝑓N𝑔NN)) → ((𝑓 ·N 𝑔) ·N ) = (𝑓 ·N (𝑔 ·N )))
3932, 33, 34, 36, 38caov12d 5682 . . . . . . . . . . . . . 14 ((((𝑦N𝑧N) ∧ (𝑤N𝑣N)) ∧ (𝑢N ∧ ((𝑦 ·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤))) → (𝑦 ·N (𝑧 ·N 𝑣)) = (𝑧 ·N (𝑦 ·N 𝑣)))
4039oveq1d 5527 . . . . . . . . . . . . 13 ((((𝑦N𝑧N) ∧ (𝑤N𝑣N)) ∧ (𝑢N ∧ ((𝑦 ·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤))) → ((𝑦 ·N (𝑧 ·N 𝑣)) +N (𝑧 ·N 𝑢)) = ((𝑧 ·N (𝑦 ·N 𝑣)) +N (𝑧 ·N 𝑢)))
4132, 34, 12syl2anc 391 . . . . . . . . . . . . . 14 ((((𝑦N𝑧N) ∧ (𝑤N𝑣N)) ∧ (𝑢N ∧ ((𝑦 ·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤))) → (𝑦 ·N 𝑣) ∈ N)
42 simprl 483 . . . . . . . . . . . . . 14 ((((𝑦N𝑧N) ∧ (𝑤N𝑣N)) ∧ (𝑢N ∧ ((𝑦 ·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤))) → 𝑢N)
43 distrpig 6431 . . . . . . . . . . . . . 14 ((𝑧N ∧ (𝑦 ·N 𝑣) ∈ N𝑢N) → (𝑧 ·N ((𝑦 ·N 𝑣) +N 𝑢)) = ((𝑧 ·N (𝑦 ·N 𝑣)) +N (𝑧 ·N 𝑢)))
4433, 41, 42, 43syl3anc 1135 . . . . . . . . . . . . 13 ((((𝑦N𝑧N) ∧ (𝑤N𝑣N)) ∧ (𝑢N ∧ ((𝑦 ·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤))) → (𝑧 ·N ((𝑦 ·N 𝑣) +N 𝑢)) = ((𝑧 ·N (𝑦 ·N 𝑣)) +N (𝑧 ·N 𝑢)))
4540, 44eqtr4d 2075 . . . . . . . . . . . 12 ((((𝑦N𝑧N) ∧ (𝑤N𝑣N)) ∧ (𝑢N ∧ ((𝑦 ·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤))) → ((𝑦 ·N (𝑧 ·N 𝑣)) +N (𝑧 ·N 𝑢)) = (𝑧 ·N ((𝑦 ·N 𝑣) +N 𝑢)))
4645opeq1d 3555 . . . . . . . . . . 11 ((((𝑦N𝑧N) ∧ (𝑤N𝑣N)) ∧ (𝑢N ∧ ((𝑦 ·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤))) → ⟨((𝑦 ·N (𝑧 ·N 𝑣)) +N (𝑧 ·N 𝑢)), (𝑧 ·N (𝑧 ·N 𝑣))⟩ = ⟨(𝑧 ·N ((𝑦 ·N 𝑣) +N 𝑢)), (𝑧 ·N (𝑧 ·N 𝑣))⟩)
4746eceq1d 6142 . . . . . . . . . 10 ((((𝑦N𝑧N) ∧ (𝑤N𝑣N)) ∧ (𝑢N ∧ ((𝑦 ·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤))) → [⟨((𝑦 ·N (𝑧 ·N 𝑣)) +N (𝑧 ·N 𝑢)), (𝑧 ·N (𝑧 ·N 𝑣))⟩] ~Q = [⟨(𝑧 ·N ((𝑦 ·N 𝑣) +N 𝑢)), (𝑧 ·N (𝑧 ·N 𝑣))⟩] ~Q )
48 simpllr 486 . . . . . . . . . . . . 13 ((((𝑦N𝑧N) ∧ (𝑤N𝑣N)) ∧ 𝑢N) → 𝑧N)
4912ad2ant2rl 480 . . . . . . . . . . . . . 14 (((𝑦N𝑧N) ∧ (𝑤N𝑣N)) → (𝑦 ·N 𝑣) ∈ N)
50 addclpi 6425 . . . . . . . . . . . . . 14 (((𝑦 ·N 𝑣) ∈ N𝑢N) → ((𝑦 ·N 𝑣) +N 𝑢) ∈ N)
5149, 50sylan 267 . . . . . . . . . . . . 13 ((((𝑦N𝑧N) ∧ (𝑤N𝑣N)) ∧ 𝑢N) → ((𝑦 ·N 𝑣) +N 𝑢) ∈ N)
5248, 51, 273jca 1084 . . . . . . . . . . . 12 ((((𝑦N𝑧N) ∧ (𝑤N𝑣N)) ∧ 𝑢N) → (𝑧N ∧ ((𝑦 ·N 𝑣) +N 𝑢) ∈ N ∧ (𝑧 ·N 𝑣) ∈ N))
5352adantrr 448 . . . . . . . . . . 11 ((((𝑦N𝑧N) ∧ (𝑤N𝑣N)) ∧ (𝑢N ∧ ((𝑦 ·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤))) → (𝑧N ∧ ((𝑦 ·N 𝑣) +N 𝑢) ∈ N ∧ (𝑧 ·N 𝑣) ∈ N))
54 mulcanenqec 6484 . . . . . . . . . . 11 ((𝑧N ∧ ((𝑦 ·N 𝑣) +N 𝑢) ∈ N ∧ (𝑧 ·N 𝑣) ∈ N) → [⟨(𝑧 ·N ((𝑦 ·N 𝑣) +N 𝑢)), (𝑧 ·N (𝑧 ·N 𝑣))⟩] ~Q = [⟨((𝑦 ·N 𝑣) +N 𝑢), (𝑧 ·N 𝑣)⟩] ~Q )
5553, 54syl 14 . . . . . . . . . 10 ((((𝑦N𝑧N) ∧ (𝑤N𝑣N)) ∧ (𝑢N ∧ ((𝑦 ·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤))) → [⟨(𝑧 ·N ((𝑦 ·N 𝑣) +N 𝑢)), (𝑧 ·N (𝑧 ·N 𝑣))⟩] ~Q = [⟨((𝑦 ·N 𝑣) +N 𝑢), (𝑧 ·N 𝑣)⟩] ~Q )
5647, 55eqtrd 2072 . . . . . . . . 9 ((((𝑦N𝑧N) ∧ (𝑤N𝑣N)) ∧ (𝑢N ∧ ((𝑦 ·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤))) → [⟨((𝑦 ·N (𝑧 ·N 𝑣)) +N (𝑧 ·N 𝑢)), (𝑧 ·N (𝑧 ·N 𝑣))⟩] ~Q = [⟨((𝑦 ·N 𝑣) +N 𝑢), (𝑧 ·N 𝑣)⟩] ~Q )
57 3anass 889 . . . . . . . . . . . . . 14 ((𝑧N𝑤N𝑣N) ↔ (𝑧N ∧ (𝑤N𝑣N)))
5857biimpri 124 . . . . . . . . . . . . 13 ((𝑧N ∧ (𝑤N𝑣N)) → (𝑧N𝑤N𝑣N))
5958adantll 445 . . . . . . . . . . . 12 (((𝑦N𝑧N) ∧ (𝑤N𝑣N)) → (𝑧N𝑤N𝑣N))
6059anim1i 323 . . . . . . . . . . 11 ((((𝑦N𝑧N) ∧ (𝑤N𝑣N)) ∧ ((𝑦 ·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤)) → ((𝑧N𝑤N𝑣N) ∧ ((𝑦 ·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤)))
6160adantrl 447 . . . . . . . . . 10 ((((𝑦N𝑧N) ∧ (𝑤N𝑣N)) ∧ (𝑢N ∧ ((𝑦 ·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤))) → ((𝑧N𝑤N𝑣N) ∧ ((𝑦 ·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤)))
62 opeq1 3549 . . . . . . . . . . . 12 (((𝑦 ·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤) → ⟨((𝑦 ·N 𝑣) +N 𝑢), (𝑧 ·N 𝑣)⟩ = ⟨(𝑧 ·N 𝑤), (𝑧 ·N 𝑣)⟩)
6362eceq1d 6142 . . . . . . . . . . 11 (((𝑦 ·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤) → [⟨((𝑦 ·N 𝑣) +N 𝑢), (𝑧 ·N 𝑣)⟩] ~Q = [⟨(𝑧 ·N 𝑤), (𝑧 ·N 𝑣)⟩] ~Q )
64 mulcanenqec 6484 . . . . . . . . . . 11 ((𝑧N𝑤N𝑣N) → [⟨(𝑧 ·N 𝑤), (𝑧 ·N 𝑣)⟩] ~Q = [⟨𝑤, 𝑣⟩] ~Q )
6563, 64sylan9eqr 2094 . . . . . . . . . 10 (((𝑧N𝑤N𝑣N) ∧ ((𝑦 ·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤)) → [⟨((𝑦 ·N 𝑣) +N 𝑢), (𝑧 ·N 𝑣)⟩] ~Q = [⟨𝑤, 𝑣⟩] ~Q )
6661, 65syl 14 . . . . . . . . 9 ((((𝑦N𝑧N) ∧ (𝑤N𝑣N)) ∧ (𝑢N ∧ ((𝑦 ·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤))) → [⟨((𝑦 ·N 𝑣) +N 𝑢), (𝑧 ·N 𝑣)⟩] ~Q = [⟨𝑤, 𝑣⟩] ~Q )
6731, 56, 663eqtrd 2076 . . . . . . . 8 ((((𝑦N𝑧N) ∧ (𝑤N𝑣N)) ∧ (𝑢N ∧ ((𝑦 ·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤))) → ([⟨𝑦, 𝑧⟩] ~Q +Q [⟨𝑢, (𝑧 ·N 𝑣)⟩] ~Q ) = [⟨𝑤, 𝑣⟩] ~Q )
6833, 34, 26syl2anc 391 . . . . . . . . . . 11 ((((𝑦N𝑧N) ∧ (𝑤N𝑣N)) ∧ (𝑢N ∧ ((𝑦 ·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤))) → (𝑧 ·N 𝑣) ∈ N)
69 opelxpi 4376 . . . . . . . . . . . 12 ((𝑢N ∧ (𝑧 ·N 𝑣) ∈ N) → ⟨𝑢, (𝑧 ·N 𝑣)⟩ ∈ (N × N))
70 enqex 6458 . . . . . . . . . . . . 13 ~Q ∈ V
7170ecelqsi 6160 . . . . . . . . . . . 12 (⟨𝑢, (𝑧 ·N 𝑣)⟩ ∈ (N × N) → [⟨𝑢, (𝑧 ·N 𝑣)⟩] ~Q ∈ ((N × N) / ~Q ))
7269, 71syl 14 . . . . . . . . . . 11 ((𝑢N ∧ (𝑧 ·N 𝑣) ∈ N) → [⟨𝑢, (𝑧 ·N 𝑣)⟩] ~Q ∈ ((N × N) / ~Q ))
7342, 68, 72syl2anc 391 . . . . . . . . . 10 ((((𝑦N𝑧N) ∧ (𝑤N𝑣N)) ∧ (𝑢N ∧ ((𝑦 ·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤))) → [⟨𝑢, (𝑧 ·N 𝑣)⟩] ~Q ∈ ((N × N) / ~Q ))
7473, 1syl6eleqr 2131 . . . . . . . . 9 ((((𝑦N𝑧N) ∧ (𝑤N𝑣N)) ∧ (𝑢N ∧ ((𝑦 ·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤))) → [⟨𝑢, (𝑧 ·N 𝑣)⟩] ~QQ)
75 oveq2 5520 . . . . . . . . . . 11 (𝑥 = [⟨𝑢, (𝑧 ·N 𝑣)⟩] ~Q → ([⟨𝑦, 𝑧⟩] ~Q +Q 𝑥) = ([⟨𝑦, 𝑧⟩] ~Q +Q [⟨𝑢, (𝑧 ·N 𝑣)⟩] ~Q ))
7675eqeq1d 2048 . . . . . . . . . 10 (𝑥 = [⟨𝑢, (𝑧 ·N 𝑣)⟩] ~Q → (([⟨𝑦, 𝑧⟩] ~Q +Q 𝑥) = [⟨𝑤, 𝑣⟩] ~Q ↔ ([⟨𝑦, 𝑧⟩] ~Q +Q [⟨𝑢, (𝑧 ·N 𝑣)⟩] ~Q ) = [⟨𝑤, 𝑣⟩] ~Q ))
7776adantl 262 . . . . . . . . 9 (((((𝑦N𝑧N) ∧ (𝑤N𝑣N)) ∧ (𝑢N ∧ ((𝑦 ·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤))) ∧ 𝑥 = [⟨𝑢, (𝑧 ·N 𝑣)⟩] ~Q ) → (([⟨𝑦, 𝑧⟩] ~Q +Q 𝑥) = [⟨𝑤, 𝑣⟩] ~Q ↔ ([⟨𝑦, 𝑧⟩] ~Q +Q [⟨𝑢, (𝑧 ·N 𝑣)⟩] ~Q ) = [⟨𝑤, 𝑣⟩] ~Q ))
7874, 77rspcedv 2660 . . . . . . . 8 ((((𝑦N𝑧N) ∧ (𝑤N𝑣N)) ∧ (𝑢N ∧ ((𝑦 ·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤))) → (([⟨𝑦, 𝑧⟩] ~Q +Q [⟨𝑢, (𝑧 ·N 𝑣)⟩] ~Q ) = [⟨𝑤, 𝑣⟩] ~Q → ∃𝑥Q ([⟨𝑦, 𝑧⟩] ~Q +Q 𝑥) = [⟨𝑤, 𝑣⟩] ~Q ))
7967, 78mpd 13 . . . . . . 7 ((((𝑦N𝑧N) ∧ (𝑤N𝑣N)) ∧ (𝑢N ∧ ((𝑦 ·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤))) → ∃𝑥Q ([⟨𝑦, 𝑧⟩] ~Q +Q 𝑥) = [⟨𝑤, 𝑣⟩] ~Q )
8079ex 108 . . . . . 6 (((𝑦N𝑧N) ∧ (𝑤N𝑣N)) → ((𝑢N ∧ ((𝑦 ·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤)) → ∃𝑥Q ([⟨𝑦, 𝑧⟩] ~Q +Q 𝑥) = [⟨𝑤, 𝑣⟩] ~Q ))
8180exlimdv 1700 . . . . 5 (((𝑦N𝑧N) ∧ (𝑤N𝑣N)) → (∃𝑢(𝑢N ∧ ((𝑦 ·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤)) → ∃𝑥Q ([⟨𝑦, 𝑧⟩] ~Q +Q 𝑥) = [⟨𝑤, 𝑣⟩] ~Q ))
8219, 81sylbid 139 . . . 4 (((𝑦N𝑧N) ∧ (𝑤N𝑣N)) → ((𝑦 ·N 𝑣) <N (𝑧 ·N 𝑤) → ∃𝑥Q ([⟨𝑦, 𝑧⟩] ~Q +Q 𝑥) = [⟨𝑤, 𝑣⟩] ~Q ))
8311, 82sylbid 139 . . 3 (((𝑦N𝑧N) ∧ (𝑤N𝑣N)) → ([⟨𝑦, 𝑧⟩] ~Q <Q [⟨𝑤, 𝑣⟩] ~Q → ∃𝑥Q ([⟨𝑦, 𝑧⟩] ~Q +Q 𝑥) = [⟨𝑤, 𝑣⟩] ~Q ))
841, 6, 10, 832ecoptocl 6194 . 2 ((𝐴Q𝐵Q) → (𝐴 <Q 𝐵 → ∃𝑥Q (𝐴 +Q 𝑥) = 𝐵))
85 ltaddnq 6505 . . . . 5 ((𝐴Q𝑥Q) → 𝐴 <Q (𝐴 +Q 𝑥))
86 breq2 3768 . . . . 5 ((𝐴 +Q 𝑥) = 𝐵 → (𝐴 <Q (𝐴 +Q 𝑥) ↔ 𝐴 <Q 𝐵))
8785, 86syl5ibcom 144 . . . 4 ((𝐴Q𝑥Q) → ((𝐴 +Q 𝑥) = 𝐵𝐴 <Q 𝐵))
8887rexlimdva 2433 . . 3 (𝐴Q → (∃𝑥Q (𝐴 +Q 𝑥) = 𝐵𝐴 <Q 𝐵))
8988adantr 261 . 2 ((𝐴Q𝐵Q) → (∃𝑥Q (𝐴 +Q 𝑥) = 𝐵𝐴 <Q 𝐵))
9084, 89impbid 120 1 ((𝐴Q𝐵Q) → (𝐴 <Q 𝐵 ↔ ∃𝑥Q (𝐴 +Q 𝑥) = 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 97  wb 98  w3a 885   = wceq 1243  wex 1381  wcel 1393  wrex 2307  cop 3378   class class class wbr 3764   × cxp 4343  (class class class)co 5512  [cec 6104   / cqs 6105  Ncnpi 6370   +N cpli 6371   ·N cmi 6372   <N clti 6373   ~Q ceq 6377  Qcnq 6378   +Q cplq 6380   <Q cltq 6383
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-nul 3883  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-iinf 4311
This theorem depends on definitions:  df-bi 110  df-dc 743  df-3or 886  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-ral 2311  df-rex 2312  df-reu 2313  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-int 3616  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-tr 3855  df-eprel 4026  df-id 4030  df-iord 4103  df-on 4105  df-suc 4108  df-iom 4314  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-1st 5767  df-2nd 5768  df-recs 5920  df-irdg 5957  df-1o 6001  df-oadd 6005  df-omul 6006  df-er 6106  df-ec 6108  df-qs 6112  df-ni 6402  df-pli 6403  df-mi 6404  df-lti 6405  df-plpq 6442  df-mpq 6443  df-enq 6445  df-nqqs 6446  df-plqqs 6447  df-mqqs 6448  df-1nqqs 6449  df-ltnqqs 6451
This theorem is referenced by:  ltexnqi  6507  addlocpr  6634  ltexprlemopl  6699  ltexprlemopu  6701  ltexprlemrl  6708  ltexprlemru  6710  cauappcvgprlemopl  6744  caucvgprlemopl  6767  caucvgprprlemopl  6795
  Copyright terms: Public domain W3C validator